
Multilizer® technology article #602
2004-02-06

Migration Tutorial
Tutorial for migration of Delphi/C++Builder localization projects to Multilizer 6.0.

Background

This document is intended for Multilizer users that have been localizing software using component localization.

Because Multilizer components have been removed, Multilizer 6 users have to migrate to binary localization
technology that was introduced in Multilizer 5.0.

Following table summarizes the differences between component and binary localization.

Feature Component localization Multilizer 6
Binary localization

Basic features (also as end-users will experience it)
Language change on the fly Yes Yes
Translation of UI Yes; requires Translator

component on every form.
Yes; no components/code needed.

Translation of hard-coded strings Yes; requires Multilizer’s
Translate() function.

Yes; requires use of Delphi
resourcestring clause.

Different UI layouts for each target
language.

No. Yes. Wysiwyg allows localization of
form layouts.

Performance
Storage for translations MLD (binary file), text file, or

database.
Resource DLL’s or resources in the
EXE.

Impact on localized EXE
performance

Moderate; strings are translated
on run-time each time a form is
shown.

No impact when running software;
works just as any software
compiled with Delphi/C++Builder.

Impact on localized EXE’s code
size.

A few hundred Kilobytes. 0 Kilobytes (without language
change on the fly).

EXE startup performance. Moderate impact, if there are lots
of translations.

No impact.

Localization engineering specifics
Required localization source. Requires Delphi/C++Builder

project, and executable.
Requires compiled binary (e.g.,
EXE).

Required software re-engineering. Drop Multilizer Translator
component on every form in the
application, and Dictionary
component on the mainform.

Support for visual form
inheritance.

No. Yes. Requires access to source
code, when creating localization
project.

Table 1: Comparison of Multilizer 6 localization and Component Localization

1. Open project

Before opening existing Multilizer 5.x project, take a backup of it.

When opening an old Multilizer project, Multilizer will popup the following informative dialog.

Figure 1: Opening an old Multilizer project will make Multilizer 6 upgrade it,

Multilizer® technology article #602
2004-02-06

After this, Multilizer opens the project and displays the translation grid as usually. Before going further, save
the project (Don't choose Save As...).

Figure 2: Multilizer 6 UI with an old (ML 5.x) project opened.

When opening a Multilizer 5.x project, Multilizer 6 will import all languages with accompanying translations.
These strings are shown in ‘Forms’ and ‘Strings’ nodes in Project Tree.

If there were hard-coded strings in ML 5 project (in ‘source’ node in project), they were not imported yet. If
there were project strings in ML 5 project, there weren’t imported either. See chapter 5 to import these.

As shown in picture above, there is a lot of non-string data in project. In order to hide them, select appropriate
filter (View!Filter…).

Multilizer® technology article #602
2004-02-06

Figure 3: Defining a filter to show strings only.

2. Define type of localized files

Before going further, the type of localized files needs to be specified; right-click target-node in project tree
(Currently selected in previous image) and choose properties.

Figure 4: Output settings for binary-localized files.

Binary localization supports three kinds of localization output file types:

• Localized file produces one exe for each language.
• Resource files produces files with compiled resources, one for each target language. This is the format

that Borland® promotes. Using this format enables run-time language switch; implementation is
described in chapter 4.

• Multilingual file includes all translated resources in one executable. It starts in the language matching
Windows default locale.

3. Configurations that affect localization work

Multilizer® technology article #602
2004-02-06

Configurations that affect the work with Multilizer project are found on project tab. Read this chapter to know,
the reason for specifying Delphi project (and source) location, and Delphi DRC-file location.

Figure 5: Delphi target, project options.

Enable display of visual inheritance

Multilizer 6 is capable of showing visual inheritance of forms. This reduces time spent on translation;
translations populate inherited forms just as the same code is propagated to inherited classes.

Turn on this setting by specifying project name.

Figure 6: Visual Inheritance: TCheckFrame is inherited from TBaseFrame. Translations done in ancestor are inherited
to child.

Enable full context for resource strings

Delphi compiler generates numeric id’s for all strings declared with resourcestring clause in Delphi source code.
These numeric id’s may change when recompiling the software, which changes the context of the string in

Multilizer® technology article #602
2004-02-06

Multilizer. In order to keep the context the same, Multilizer needs to have access to the DRC file generated by
Delphi compiler. Using this Multilizer is able to use a context that is the same as resourcestring constant name.

Turn on this setting by specifying DRC file name.

Figure 7: Strings with resource id’s as context; Delphi compiler creates the id’s, and on each compilation
resourcestrings may get different id’s.

Figure 8: Strings with full context; context is formed out of unit name and resourcestring constant name.

4. Changes in code

While Multilizer 6 takes care of upgrading the project to the new format, Developers have to take care of the
changes in Delphi/C++Builder project.

Generally there are two things to do:

1. Remove Multilizer components
2. Stop using Multilizer’s Translate() function. These strings were placed in “source” node in ML 5.x

projects, after doing the change below the strings will be placed in “strings” node in ML6 project.
Example: if you earlier had Delphi code like this:
var
 s : String;
begin
 s:=IvDictionary1.Translate(‘Hello world!’);
change it to
resourcestring
 strHello = ‘Hello world!’;
var
 s : String;
begin
 s:= strHello;

Multilizer® technology article #602
2004-02-06

Dynamic language change can be added if output files are “resource files”. Use SelectResourceLocale
function (located in IvResLangD unit) to show a language selection dialog. Add IvResDLL in mainform’s uses
clause to enable runtime language switch.

Translation of Common Dialogs is enabled, if you add IvDialogs.pas to the Project Manager, or add
IvDialogs unit to the uses clause anywhere in the application.

5. Finalize migration

After changes in code, build the new executable(s). Once the native executable(s) are working properly, rescan
them in Multilizer project.

Now Multilizer will find new strings, if you used resourcestring clause as described in previous chapter.
Translations for these can be imported from Multilizer 5 project; choose File!Import… and specify location of
the Multilizer 5 project.

Finally build localized items in Multilizer and test them.

Other migration paths

Migrate from Multilizer 5 binary localization projects

It’s easy to migrate to Multilizer 6; simply open ML 5 project in Multilizer 6. No changes in Delphi/C++Builder
source code are required.

Migrate from Multilizer 4 or older projects

Best results in this migration path are achieved by first creating a new Multilizer 6 project, and then importing
(File!Import…) translations to it.

In addition the same code changes as in migration from Multilizer 5 component localization project needs to be
done.

	Migration Tutorial
	Background
	1. Open project
	2. Define type of localized files
	3. Configurations that affect localization work
	4. Changes in code
	5. Finalize migration
	Other migration paths

