

Developer’s Guide

Multilizer® 5.1 – Developer’s Guide

April 2003

Copyright © 2003 Multilizer Inc. All rights reserved.

Multilizer is a registered trademark of Multilizer Inc. All other trademarks and registered
trademarks are the property of their respective owners.

Table of Contents
Introduction...1

Multilizer naming conventions ..1

Tutorials for different platforms ..1

Conventions used in this book ...1

Installation..2

Documentation...3

Registration..3

Technical Support ..3

Part I: Getting Started..4

Overview ..5

Internationalization...5

Localization ..5

Localization Technologies ..8

File Localization ...8

Binary Localization ...8

Resource Localization ..10

Source Code Localization ..10

Document Localization ...11

Component Localization...12

Database Localization..12

Comparing Different Application Localization Technologies12

Unique architecture ..13

Translation memory ...14

Platforms and editions ..15

Supported tools, operating systems and documents....................15

.NET and Visual Studio .NET...15

Databases ..15

Delphi and C++Builder ...15

J2ME ..15

Java ..15

Oracle Forms..15

Palm ...16

StreamServe...16

Symbian..16

Visual Basic and Embedded Visual Basic..16

Visual C++ and Embedded Visual C++..16

Visual J++...16

WAP ...16

XML ..16

Multilizer Setups...16

Multilizer ...17

Multilizer Translator Edition ..17

Coping with different languages ...18

Character sets..18

Single byte character sets ..18

Multi or double byte character sets ..19

Bi-directional character sets ...19

Unicode..20

Single-byte and double-byte character set trouble...................................20

Universal character encoding system ..20

Text Input ...20

Western languages ..20

Far Eastern languages ...21

Middle Eastern languages..21

Country specific items..21

More about localization ..21

Part II: Tutorials ...22

.NET 23

Visual Studio .NET Project File Localization23

.NET Resource File Localization..24

English Application...24

Internationalization...25

Internationalization of forms ...25

Internationalization of code ..26

Creating a Project ..29

Translating a Project ..32

Visual C++..34

Binary Localization...34

Resource File Localization ...35

English Application...36

Internationalization...37

Creating a Project ..43

Translating a Project ..45

Visual Basic..47

How to use Multilizer ..47

Localization process...48

Source localization...48

Windows...49

Windows CE...49

Binary localization ..49

Component Localization...50

English Application...50

Internationalization...51

Creating a New Project ..51

Translating a Project ..54

Delphi and C++Builder ...56

Binary Localization...56

Component Localization...57

English Application...58

Binary Internationalization..58

Creating a Binary Project ...66

Translating a Project ..69

Integrated Translation Environment ...70

Controlling What Properties Are Localized...................................70

Component Internationalization ...71

Creating a Component Project...77

Using Run-time Dictionary ...78

Java 83

Opening a Monolingual Application..83

Resource Bundle Localization..84

Resource Bundle Internationalization...84

Creating a Resource Bundle Project ..86

Translating a Project ..88

Localization with Multilizer Components88

Making the Application Multilingual ..88

Creating a Component Project...90

Component Internationalization ...91

Changing Language at Run-Time ..95

Writing Multilingual Applets ..97

Writing Multilingual Swing Applications ..97

Font Issue with Non-Western Languages97

Java Micro Edition ..98

J2ME Localization..98

Application With An English User Interface..................................99

Internationalization...100

Creating a New Project ..102

Translating a Project ..104

Visual J++...106

Open a Monolingual Application ..106

Make Application Multilingual...107

Create a Project for the Application..108

Translating a Project ..110

Internationalize Your Code...110

Change Language at Run-Time...114

Symbian ...117

Symbian Localization ...117

Application Using an English User Interface119

Internationalization...119

Creating a New Project ..120

Translating a Project ..123

Deploying ...124

Conditional Compiling ..125

Palm 127

Palm Localization...127

Application With An English User Interface................................128

Internationalization...129

Creating a Project ..130

Translating a Project ..133

XML 135

XML Localization..135

English File ..136

Creating a New Project ..136

Translating a Project ..139

WAP 142

WAP Localization...142

Application with an English User Interface143

Internationalization...144

Creating a New Project ..144

Translating a Project ..147

Database ..149

General Considerations on Database Contents Localization and
Used Terminology..149

Field and Table Naming Conventions and Restrictions..............151

Fields Localization..152

Tables Localization ..153

Single Table Localization ...155

Creating a New Project with Localized Fields156

Creating a New Project with Localized Tables159

Creating a New Project with a Single Table160

Translating a Project ..162

Oracle® Forms ...163

Main differences between Oracle Translation Manager/Builder and
Multilizer...163

Choosing the right native language..163

How Multilizer localizes fmb files..163

Multilizer project versus Oracle Translation Manager/Builder database163

PL/SQL code localization ...164

Oracle Forms Localization ...164

Creating a New Project with Oracle Forms165

Translating a Project ..169

Importing Translations From OTM/OTB into Multilizer’s Translation
Memory ..169

StreamServe ..174

StreamServe Localization ..174

English File ..175

Creating a New Project ..175

Translating a Project ..177

Tagging ..178

Translating a Project...179

Adding Languages..180

Part III: Using Multilizer..184

Globalization Process...185

Globalization team ...185

Background ..185

Team members ..185

Tasks ..185

Work-flows ...186

Enabling concurrent work...186

Localization type...187

Internationalization ...188

To do’s ...188

Creating a new project ...188

Specifying the target type...188

Specifying a file target ..189

Entering project information ...190

Selecting languages used in the project ..190

Adding Targets ...191

Finishing the Wizard...192

I18N essentials ..192

Source-code globalization ..193

Component globalization..193

Binary globalization ..193

Localization ..194

To do’s ...194

Preparing a project to be outsourced ...194

Adding visual context ...195

Adding comments...196

Locking strings – preventing translation of strings196

Adding project strings...197

Adjusting scanning options...198

Updating the project file..198

Pre-translation ..199

Building a Localization Kit ..199

Translation..203

Build localized software ..204

To do’s ...204

Importing translation to a project ..204

Starting the Import Wizard..204

Specifying import properties...206

Build localized software versions ...208

Binary localization ..208

Source localization ...209

Component localization ..209

Quality Assurance – QA ...210

Test languages ..210

Cell highlighting..211

Translator components ..212

Translation Memory on database server ..213

General considerations ..213

Database related tasks ..213

Create new database ...213

Define Connection parameters ..213

Connecting from Multilizer to MTM ..214

Managing MTM rights ..218

Builder Command Line Tool ...220

Adding..221

Examples..221

Scanning ..222

Examples..222

Removing...223

Examples..223

Importing ..224

Examples..224

Exporting..226

Examples..227

Exchanging ..228

Examples..228

Translating ...229

Examples..229

Building ..230

Examples..230

Creating a Sub Dictionary ..231

Examples..231

Appendix A: Glossary ...232

Code page..232

Dictionary..232

Globalization...232

Internationalization ...232

Language IDs ...232

Linguist ...233

Locale ...233

Localization...233

Module..233

Translator ...233

Index...234

 Multilizer 5.1 - Developer’s Guide 1

1
Introduction

The purpose of this Developer’s Guide manual is to familiarize you with Multilizer and the
concepts and techniques behind software and document localization. This manual gives
a short overview of world's languages, which is a central issue in software localization.
Also, the different scripts are discussed. Later these issues are described in the context
of developing software. After the introduction to software localization related concepts,
the Multilizer technology is introduced to the reader. This gives an overview of the
technical solutions, which make it flexible and scalable even when working with
multilingual – or multicultural – software.

This chapter gives important information on the following issues:

• Text style and symbol conventions used in this book

• Multilizer Installation notes

• Where to get support.

At the end of this manual, there is a glossary of terms and concepts used in this book.

Multilizer naming conventions
Multilizer 5.1 has different editions: Multilizer Enterprise, Multilizer for Oracle,
Multilizer for .NET, Multilizer for VCL and Multilizer for Java are for developers or
project managers. These editions have full functionality to scan, translate and build
software and from here on in are referred to as Multilizer. The free-of-charge edition for
the translator is called Multilizer Translator Edition. This edition is capable only for
translating projects.

Tutorials for different platforms
This guide contains tutorials for every platform Multilizer 5.1 supports. Your particular
product might not contain support for every platform represented in this manual.

Conventions used in this book
The following typographical conventions have been used in this book.

Names of windows, menu options and key buttons are printed in bold Sans serif.
Texts for figures and references to chapters and sections in this guide are shown in italic
Sans serif.

Programming language related items are shown in the following manner.

• Names of components, component properties, procedures, and functions are shown
in bold monospaced font.

• Code listings and URLs are shown in monospaced font.

The More info symbol is used when there is additional information available either in the
appendices of this document, in Multilizer online help or on Multilizer web-pages at:
http://www.multilizer.com.

2 Multilizer 5.1 - Developer’s Guide

The note symbol is used in order to give emphasis for certain tasks or issues of big
importance in the current topic.

The text marked with the Tip symbol gives useful hints, which may simplify tasks
described in the current chapter.

The Warning symbol is used whenever there may be a possibility to lose data or
experience other kinds of damage. The normal context for this symbol indicates that you
may lose your translation data if you proceed.

This symbol is used in issues describing different character sets. Character sets are one
central issue to be taken into consideration when localizing software.

All screen-captured images have been taken when the active language of Multilizer is
English.

Installation
Multilizer is installed from CD or directly from the Internet. Refer to the instructions for
installing the software.

When purchasing Multilizer, you simply enter the lisence number to your evaluation
version.

Commercial version users will find minor updates on the Multilizer support pages:
http://www.multilizer.com/support

New builds or patches can at all times be downloaded from:

http://www.multilizer.com/download

Evaluation versions of the software are available at the Multilizer download page:
http://www.multilizer.com/download

If you install a setup version that supports component localization, such as Delphi, the
setup will automatically install the components into the IDE. If this fails, you have to install
the components manually. In this case, consult the software development tool
documentation.

Multilizer setup creates the following program group:

Figure 1 Multilizer program group.

Multilizer icon starts the Multilizer. The other icons are shortcuts to Multilizer
documentation. Read the documentation in the following order:

 Multilizer 5.1 - Developer’s Guide 3

1. Readme group contains the readme files.

2. Developer’s Guide manual (this document)

3. Help group contains the platform specific online helps.

Documentation
The online documents included with Multilizer share the same content as the printed
Multilizer manual. The following online documents are available after installing Multilizer:

• multiliz.pdf is Developer’s Guide (this document).

• translat.pdf is Translator’s Guide.

The printed manual includes both of the documents above.

The best source for technical information is the online help. It includes detailed
information of Multilizer’s features and usage as well as Multilizer component reference
with code samples.

You can also get more information and tips on Multilizer website.
http://www.multilizer.com/support

Multilizer website includes latest versions of documentation, Multilizer Knowledge Base
search functionality, technical documents and other support material.

Registration
By registering the product you will get technical support as defined in the Software
License Agreement.

Although the Multilizer package contains the registration card, we strongly recommend
that you register the software at our web site:
http://www.multilizer.com/support

This creates you a personal account to our extranet services. Using the account you can
download new versions and bug fixes. You can also join a mailing list that keeps you
updated about Multilizer and multilingual globalization technology.

You can download the latest Multilizer version at
http://www.multilizer.com/support

Technical Support
If you have a question about Multilizer, look first at the online help. If you can’t find the S

S
p
s
t
s

upport Center

answer at the online help check it at the support center:
http://www.multilizer.com/support

Sometimes our technical support person will ask you to send a sample application. Try to
reate a simple program that demonstrates your case.

f your development tool uses components or beans try not to use any 3rd party
omponents. If they are needed to demonstrate the problem, include the 3rd party
omponents, the application binary (resource based localization) or the source code files
component based localization) and the Multilizer project file (*.mpr) into a single zipped
ile and email it to our technical support.
c

I
c
c
(
f

ending your
rogram
ource to
echnical
upport
Please include the version number of Multilizer, compiler version used and the operating
system (version/language). This will greatly speed up solving the problem. Any source
codes we obtain through bug reports are handled strictly confidentially.

4 Multilizer 5.1 - Developer’s Guide

I
Part I: Getting Started

This part explains some key tasks about software internationalization, localization and the
Multilizer technology that introduces a fast and flexible way to localize your applications.

 Multilizer 5.1 - Developer’s Guide 5

2
Overview

Internationalization and localization are the key part in the globalization process.

Internationalization
In software internationalization the hard-coded language or country dependent
information is removed. In practice this means that no language specific information,
currencies, dates, times etc. should be inside the program code. Software
internationalization is the first thing to implement in order to make the software adapt to
the target country. Depending on the software type and how it has been programmed,
this phase may be very time-consuming. The programmer typically does the
internationalization.

Localization
Localization means converting a program to a local market. The simplest way is to
translate all the strings into the local language. In most cases you also have to make
slight modifications to the program to meet the local standards and culture. In addition the
software has to be prepared to support the target country's character set and language.

Localization needs both developers that do the engineering and linguists that do the
translations.

Internationalization

German
Localization

French
Localization

English
Localization

Figure 2 Internationalization is the first step of localization

The most common localization approach by far is the process where several localized
applications are produced. The process starts with internationalization. The process
continues with localization where linguists translate the user interface, manuals, etc. The
result is several localized applications. Each localized program can only support one
language.

6 Multilizer 5.1 - Developer’s Guide

Internationalization

German
application

English
application

Japanese
application

German
Localization

French
Localization

English
Localization

Figure 3 Multiple localized applications support one language each

Some platforms (e.g. Windows) can store resources in several languages. In such a
platform it is possible to build a single binary file containing all languages.

Internationalization

Multilingual application

German
Localization

French
Localization

English
Localization

Figure 4 Single multilingual application contains all supported languages

Internationalization is used to produce single worldwide sources. Single worldwide source
means that you have only one version of your source code. To localize the application to
a new language you do not have to change the source code but the translation of the
resource data is enough. You either compile or include new resources for each localized
version. The methods for doing internationalization and especially localization can vary a
lot. The time spent on these phases may become the most decisive factor in software
delivery dates.

Traditional localization techniques may take several months to complete and in the
meantime the source should be frozen. Multilizer provides a way that unifies the
localization process. No matter what your application is, the localization process is always
the same. This reduces the localization costs considerably. Furthermore, Multilizer makes
it possible to start the localization process even before the software development process
is completed. Software development can continue the same time as the localization takes
place. This reduces the time localization process takes considerably.

Multilizer contains the following tools:
Tool Description
Multilizer

Extracts the strings from the applications or content and
provides methods to edit and translate the strings.
Windows application (multiliz.exe).

Builder

A command line tool that creates the localized application files
and/or the run-time dictionary for the application.
Windows command-line application (mlbuild.exe).

 Multilizer 5.1 - Developer’s Guide 7

Read Chapter 27 to get more information about Builder.
Components

Platform specific components (e.g. VCL, COM or JavaBeans)
that attach the run-time dictionary to the application and make
the application multilingual.
Read the online helps to get information about Multilizer
components.
These are optional. They are used only when the component
localization type is used.

8 Multilizer 5.1 - Developer’s Guide

3
Localization Technologies

Multilizer supports four three of localization technologies. In Multilizer documentation
these are referred to as localization types. The division is based on the way the project
source-code and/or executable is accessed in the localization process:
Localization type Description
File localization Translates the data in the file to produce either localized

file or a single multilingual file. This type can be divided
into the following sub types:
- Binary localization
- Resource localization
- Source code localization
- Document localization

Component localization Adds Multilizer components to the application to produce
a single multilingual application.

Database localization Localizes the content of the database.
See Database Tutorial chapter

The localization type is based on target platform’s localization support and the
development tool. In some environments the developer can choose between multiple
localization types.

Each localization type has its advantages and disadvantages. The following paragraphs
describe these localization types in more detail.

File Localization
In file localization the files are translated. A file is either an application binary file,
application resource file, application source code file, or a document file.

Binary Localization
In binary localization the application binary files are translated. An application binary file is
either the application file (e.g. EXE), a library file (e.g. DLL) or a component file (e.g.
OCX). Multilizer makes binary localization very easy. The following picture describes the
binary localization process.

 Multilizer 5.1 - Developer’s Guide 9

French resources
German resources

Application
Native resources

Application
French resources

Application
German resources

Application
English resources

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

English resources

or

Application
English resources

German resources

French resources

or

Figure 5 Binary localization process

The programmer uses Multilizer to extract strings from the application binary file (1).
Multilizer saves these strings to a project file. The programmer sends the project file to
the translators that use Multilizer to translate the project (2). The programmer uses
Builder to create the localized versions of the binary file (3). As a result there will be one
binary file for each language, one multilingual binary file containing all supported
languages, or one resource file (e.g. DLL) for each language.

For example the native language might be English. If you decide to localize the program
to German and French you will have three different versions of the program - each
supporting one language. On some platforms you can also create a single application
containing English, German and French resources in the same binary file.

The following table contains the description of each file that Multilizer generates in the
example mentioned above.
File Description Resource language(s)
sample.exe Original application file English (in most cases)
en\sample.exe English application file English
de\sample.exe German application file German
fr\sample.exe French application file French
en\sample.ENU English resource DLL English
de\sample.DEU German resource DLL German
fr\sample.FRA French resource DLL French
all\sample.exe Multilingual application file English, German and French

When deploying the application you can either deploy the localized binary file (e.g.
de\sample.exe), the multilingual binary file (all\sample.exe), or the original binary
file (e.g. sample.exe) with the localized resource DLL(s) (e.g. de\sample.DEU).

Binary localization can be used with the following applications:
Application type Multilizer localizes
C++Builder Form and string resources of a C++Builder application.
Delphi Form and string resources of a Delphi application.
Palm Dialog strings, menu strings, and resource strings of a Palm

application.
Visual Basic and
Embedded Visual Basic

String resources of any Visual Basic or Embedded Visual
Basic application.

Visual C++ and
Embedded Visual C++

Dialog, menu, string, and accelerator resources of any Visual
C++ or Embedded Visual C++ application.
This is not Visual C++ specific but any Windows or Windows
CE application having standard Windows resources can be
localized using this method.

10 Multilizer 5.1 - Developer’s Guide

We recommend the use of binary localization. However not all platforms support binary
localization. If your development tool is not included in the list above you have to use
some other localization. type.

Resource Localization
In resource localization the resource files are translated. Multilizer makes resource
localization very easy. The following picture describes the source localization process.

Native
resource files

French
resource files

German
resource files

English
resource files

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

4

Compiler

Programmer

Application
French resources

Application
German resources

Application
English resources

Application
English resources

German resources

French resources

or

Figure 6 Resource localization process

The programmer uses Multilizer to extract strings from the resource files (1). Multilizer
saves these strings to a project file. The programmer sends the project file to the
translators that uses Multilizer to translate the project (2). The programmer uses Builder
to create localized resource files (3). Finally the programmer compiles/links the
application to add the localized resource files. As a result there will be one application for
each language or one localized application file containing all supported languages.

We recommend the use of resource localization only if binary localization is not supported
on your platform. Resource localization can be used with the following applications:
Application type Multilizer localizes
Java Property files of a Java application or applets.
Symbian Dialog strings, menu strings and the resource strings of an

Eikon application.
Visual C++ and
Embedded Visual C++

Dialog strings, menu strings, string tables, and accelerator
keys of a Visual C++ or Embedded Visual C++ application.
This localization type is not Visual C++ specific but any
Windows and Windows CE application having standard
Windows resources file (.RC) can be localized with this
method.

.NET Dialog strings, menu strings and the resource strings of a
.NET application.

Source Code Localization
In source code localization the source code files are translated. Multilizer makes source
code localization very easy. The following picture describes the source localization
process.

 Multilizer 5.1 - Developer’s Guide 11

Native
source code files

French
source code files

German
source code files

English
source code files

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

4

Compiler

Programmer

French
Application

German
Application

English
Application

Figure 7 Source code localization process

The programmer uses Multilizer to extract strings from the source code files (1). Multilizer
saves these strings to a project file. The programmer sends the project file to the
translators that uses Multilizer to translate the project (2). The programmer uses Builder
to create localized source code files (3). Finally the programmer compiles the application
with the localized source code files. As a result there will be one application for each
language.

We recommend the use of source code localization only if binary localization or resource
localization is not supported on for your platform. Source code localization can be used
with the following applications:
Application type Multilizer localizes
Visual Basic and
Embedded Visual Basic

Form strings and the resource strings of a Visual Basic or
Embedded Visual Basic application.

Document Localization
In document localization the document are translated. A document file is any file
containing data such as key file (.TXT), XML file (.XML), ini file (.INI), wap file (.WML),
StreamServe file (.SLS), etc. Multilizer makes document localization very easy. The
following picture describes the document localization process.

Native file

French file
German file

English file

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

Figure 8 Document localization process

The programmer uses Multilizer to extract strings from the document files (1). Multilizer
saves these strings to a project file. The programmer sends the project file to the
translators that uses Multilizer to translate the project (2). The programmer uses Builder
to create localized document files (3). As a result there will be one document file for each
language.

Document localization can be used with the following document types:
Application type Multilizer localizes
INI files Selected keys
Key files The value of each key
StreamServe SLS files Strings

12 Multilizer 5.1 - Developer’s Guide

WAP files WML tag values of WAP pages
XML files Selected tags

Component Localization
Component based localization uses Multilizer components to make the application
localized. This goes beyond traditional localization – it makes it possible to create
multilingual applications. A single multilingual application supports multiple languages
and the user can switch the language on the fly.

The programmer uses Multilizer to extract strings from the application (1). Multilizer saves
these strings to a project file. The programmer sends the project file to translators that
use Multilizer to translate the project (2). The programmer uses Multilizer components to
add dynamic language support to the application (3). As a result there will be one single
application supporting any number of languages.

Application
Native resources 1 2 3

Multilizer
application

Multilizer
application

Builder or
Compiler

Programmer ProgrammerTranslators

Project file Application
Multilizer code
Native resources
Runtime dictionary

Translated
Project file

Figure 9 Component based localization process

Component- localization can only be used with a software development tool supporting
components:

Database Localization
See the Database Tutorial chapter.
Application type Multilizer localizes
Database Strings from selected database field(s).

Comparing Different Application
Localization Technologies
The following table compares different application localization types.
 Binary localization Source localization Component

localization

Development tool Description
Delphi Multilizer plus Multilizer components make forms and message

strings of Delphi applications multilingual
C++Builder Multilizer plus Multilizer components make forms and message

strings of C++Builder applications multilingual
Java and
Visual J++

Multilizer plus Multilizer beans make frames and message strings
of Java applications and applets multilingual

 Multilizer 5.1 - Developer’s Guide 13

+ Source codes are
not needed

+ Source code doesn’t
need to be changed

+ Run-time language
switch

+ No size or speed
overhead

+ No size or speed
overhead

+ One application
supports any number
of languages

+ No run-time code is
added

+ No run-time code is
added

+ Automatic bi-
directional support

Pr
os

 + No recompiling
needed

+ No resourcing
needed

+ No resourcing
needed

- Resourcing needed - Recompiling needed - Source code need to
be changed

- No automatic bi-
directional support
except in Delphi and
C++Builder

- No automatic bi-
directional support

- Run-time code may
cause troubles with 3rd
party components

C
on

s

- No runtime language
switch except in Delphi
and C++Builder

- No runtime language
switch

- Size and speed
overhead: application
gets a bit bigger and
slower

In general we recommend using binary localization. If this is not available on your
platform we recommend using source localization. Use component localization only if
your application must have the run-time language switch. The following table contains
supported localization types for each platform.
Application type Binary Resource Source Component
.NET - Yes - -
C++Builder Yes - - Yes
Delphi Yes - - Yes
Java - Yes - Yes
J2ME - Yes - -
Palm Yes - - -
Symbian - Yes - -
Visual Basic Yes - Yes (Yes) *
Visual C++ Yes Yes - -
Visual J++ - Yes - Yes

The recommended technology is highlighted with bold typeface.

*) Multilizer 4.x and 5.0 contained Multilizer components for Visual Basic. The current
version does not contain those components. However Multilizer application can still
create projects having Visual Basic targets using the Multilizer components.

Unique architecture
Multilizer separates the localized data from the source and stores it in a platform and
compiler independent format. This Multilizer project file format is a Unicode based XML
file. The separation makes it possible to localize all kinds of applications and documents
in the same way. It is also possible to reshape the visual parts of the application without
loosing any translations, and add new languages without using development tools.

This type of architecture gives a very practical approach to localization:

• Human language tasks are executed with the Multilizer. The localization method is
the same no matter what kind of development tool is used. Because the human

14 Multilizer 5.1 - Developer’s Guide

translator needs to learn only one tool, Multilizer, the localization process gets faster
and less expensive.

• Software development tasks are done either by Multilizer alone (binary and source
localization) or by including the Multilizer components in the project (component
localization).

Multilizer and optional components are included in every Multilizer setup package.

Multilizer provides timesaving features for working with human languages: multiple
wizards, re-use of translations, built-in quality assurance indicators such as statistical
information, local and shared translation memory, and enterprise-wide leveraging
capabilities.

Multilizer components provide the developers with an easy-to-use, yet powerful, interface
for software development. Developing the RAD way, localized software’s behavior is
controlled through component properties, events and methods.

With Multilizer, you can continue developing the software even when localization takes
place.

It is important to understand that Multilizer is not a tool that automatically translates words
or phrases into another language. Instead it provides a mechanism that uses precompiled
translator tables, dictionaries, to make the program multilingual. It is your (or your
translator’s) job to translate the strings in your program. Multilizer makes this translation
as easy as possible with the usage of different kind of glossaries and a translation
memory.

With Multilizer you can create a single worldwide application. Ultimately, the support for
languages depends on the OS support for language specific features.

Translation memory
Translation memory stores every single translation you have done so that they can be
used in future projects or in automatic translation. You can also import existing translation
memories (e.g. TMX) and glossaries (e.g. Microsoft glossaries, Trados®MultiTerm™) to
the translation memory. You can exchange translation memories between different
computers or you can share the same translation memory between multiple users in the
Inranet or using a database server, over the internet.

The translation memory is stored to a database. Multilizer can directly use most
commercial databases including Oracle®8i/9i, Microsoft® SQL Server, Interbase,
MySQL. (Translation Memory on database server, p. 213)

 Multilizer 5.1 - Developer’s Guide 15

4
Platforms and editions

The first part of this chapter describes software development tools and operating systems
Multilizer supports. The second part describes Multilizer setup files.

Supported tools, operating systems and documents
Multilizer supports all major desktop and mobile operating systems and software
development tools.

.NET and Visual Studio .NET

.NET applications use the standard resource format of.NET. Multilizer supports both
Visual Studio .NET project file localization and the.NET resource file localization.

See.NET Tutorial chapter for detailed information on.NET localization.

Databases
Most databases contain information that needs to be localized. For example a database
can contain product information in English. This information needs to be translated and
stored to a database.

See Database Tutorial chapter for detailed information on content(data) localization.

Delphi and C++Builder
Delphi and C++Builder are object and component oriented software development tools
that use Object Pascal or C++ software development language and VCL component
library. Multilizer supports both binary and component localization for Delphi.

See VCL Tutorial chapter for detailed information on Delphi/C++Builder localization.

J2ME
J2ME (Java Micro Edition) does not contain resource bundle classes. To support this
localization, Multilizer contains a lightweight property file class for J2ME
(multilizer.microedition.Properties.java).

See Java Micro Edition Tutorial chapter for detailed information on J2ME localization.

Java
Java contains resource bundle classes. Multilizer supports these. In addition Multilizer
includes components that make localization even easier.

See Java Tutorial chapter for detailed information on Java localization.

Oracle Forms
Oracle Forms contains user interface elements. Multilizer localizes form files.

See Oralce Forms Tutorial chapter for detailed information on Oracle Forms localization.

16 Multilizer 5.1 - Developer’s Guide

Palm
Handheld computers and 3rd generation cell phones use Palm Operating System.
Multilizer localizes compiled Palm applications (.prc).

See Palm Tutorial chapter for detailed information on Palm localization.

StreamServe
StreamServe's report string files (.sls) files contain string data that needs to be localized.
Multilizer localizes the strings if the SLS files.

See StreamServe Tutorial chapter for detailed information on StreamServe localization.

Symbian
The handheld computers and 3rd generation cell phones use Symbian operating system.
Multilizer localizes Symbian resource files.

See Symbian Tutorial chapter for detailed information on Symbian localization.

Visual Basic and Embedded Visual Basic
Visual Basic is a component oriented software development tool that use Basic software
development language and COM components. Multilizer supports binary and source
localization for Visual Basic (Windows) and Embedded Visual Basic (Windows CE).

See Visual Basic Tutorial chapter for detailed information on Visual Basic localization.

Visual C++ and Embedded Visual C++
Visual C++ applications use the standard resource format of Windows and Windows CE.
Multilizer supports both binary and source localization of resources.

See Visual C++ Tutorial chapter for detailed information on Visual C++ localization.

Visual J++
Visual J++ is a component oriented software development tool that uses Java
programming language and WFC components. Multilizer supports component localization
for Visual J++.

See Visual J++ Tutorial chapter for detailed information on Visual J++ localization.

WAP
WAP applications are web applications targeted for mobile clients. A WAP application
contains WML decks and WML scripts. Multilizer localizes deck files.

See WAP Tutorial chapter for detailed information on WAP localization.

XML
Most XML files contain information that needs to be localized. For example, an XML file
can contain product information in English. This information needs to be translated.
Multilizer also translates text and INI files.

See XML Tutorial chapter for detailed information on content(data) localization.

Multilizer Setups
Multilizer setups are available on CD or can be downloaded from the Internet from
http://www.multilizer.com/download

All setups require a serial number if used for commercial purposes. You get the serial
number by purchasing Multilizer.

If you install the setup without serial number, an evaluation version will be installed.

 Multilizer 5.1 - Developer’s Guide 17

Setups install the following files:

• Multilizer tool (multiliz.exe). This is the Multilizer application.

• Builder tool (mlbuild.exe). This is the Multilizer command line tool.

• Developer’s Guide manual (multiliz.pdf). This is this manual.

• Translator’s Guide manual (translat.pdf).

• Demo projects. These tool-specific demo applications are included in Multilizer
setups.

• Components. Components and component online documentation are included in
Multilizer setups that target component-based software development tools (e.g.
Delphi, C++Builder, VB, Java).

Multilizer
Run ML51.exe to install Multilizer.

Multilizer Translator Edition
Multilizer Translator Edition is installed in the following way:

• Exchange Package. A developer can use Multilizer to create an Exchange Package
that includes Multilizer tool and the translatable data. This package is self-extracting
and installs automatically in the translator’s computer.

• Internet. The translator can download Multilizer Translator Edition setup file
(ML51TE.exe) from Multilizer website and install it.

• CD. The translator can install Multilizer Translator Edition setup file (ML51TE.exe)
from Multilizer CD and install it. The CD with accompanying printed documentation
can be ordered from Multilizer website. This setup requires serial number for
complete installation.

18 Multilizer 5.1 - Developer’s Guide

5
Coping with different languages

One main task in software localization is to make the software work in the language and
character set of the target country. Originally, computers were designed to work with
character sets including only those characters needed in English. When computers
became commercially available everywhere in the world, there was a need to include the
target country's characters into the character set as well.

To be able to handle a specific language in the computer, it must be possible to handle its
character set. There must be methods for inputting, storing and outputting characters.
Thus, localizing applications involves

• Processing character sets and

• Accommodation of the application's I/O methods for the current language.

The following chapters introduce different types of scripts. Later, the most important of
these will be discussed in the context of today's information technology.

Character sets
All languages in the world can be divided into three basic groups, depending on the type
of character set they use. The groups are:

• Single byte character sets.

• Multi or double byte character sets.

• Bi-directional character sets.

This division is a rather technical one, but as a matter of fact, it reflects three major
cultures as well. The groups mentioned above could be rewritten in the following way:

• European character sets.

• Far Eastern character sets.

• Middle Eastern character sets.

Single byte character sets
Single byte character sets (SBCS), sometimes called single byte left to right, contain a
maximum of 256 characters. Each character is stored in one byte. The text is written from
left to right. Latin (e.g. English, German, French, Spanish, Finnish, Swedish), Greek and
Cyrillic (e.g. Russian, Ukrainian) character sets are single byte.

These character sets evolved in Europe, and they started from the old Hellenistic culture.
It is very possible that these scripts came into Europe from Mesopotamia via the Near
East, though.

Greek
The ancient Greek character set was derived from Linear B, which was similar in
structure to Japanese. Later, due to the Dorian invasions, a script based on the North
Semitic model was adapted. As in modern Middle Eastern scripts, this was written from
right to left.

Later, such inventions as the vowels a, e, i, o, u made it the most successful and the most
practically useful of the world's scripts at that time.

 Multilizer 5.1 - Developer’s Guide 19

Modern Greek script has undergone only a few changes since the classical Greek period.
Most of the changes are phonological.

Latin
Old Greek script expanded over Southern Italy and came into Roman hands. The
alphabet was simplified. Through the influence of the Roman Empire, the Latin alphabet
came into use in the whole Western civilization. On the basis of Latin script, the modern
European character sets developed.

Thus, these alphabets are very denominative for European culture(s) and for those
countries where the Europeans established their colonies. The strong cultural expansion
from the XVth century on has exported – especially the Latin alphabet – all over the world.
In South and North America, Africa and Australia, the Latin alphabet is almost the only
one in use.

All of these character sets have implemented accent marks to denote special sounds, i.e.,
the characters are based on a base character and the phonetic difference is marked with
an accent. In addition, some additional characters have been taken in use.

For example, in German, 'ß' is used to denote 'ss' when it is in a certain place. In addition,
in African languages characters like |, ||, ‡ and ≠ are used to mark non-pulmonic sounds
(clicks) not used in European languages.

From the Middle Ages some ligatures survived: French œ, Danish æ. The best known is
the ampersand '&', a ligature of the Latin word 'et' (and).

In addition, languages using different character sets and scripts are often transliterated in
literature and schoolbooks into the Latin character set. For transliteration purposes,
additional diacritics are attached to base characters.

Multi or double byte character sets
Multi byte character sets (MBCS), sometimes called double byte (DBCS) or Far East,
contain more than 256 characters or idioms. Each character is stored either in one byte or
two bytes. The text is written mainly from left to right top to bottom but sometimes from
top to bottom left to right. Chinese, Japanese and Korean character sets are multi byte.

Bi-directional character sets
The bi-directional character set (BiDi), sometimes called single byte bi-directional,
contains a maximum of 256 characters. Each character is stored in one byte. The text is
written mainly from right to left but sometimes from left to right. Arabic and Hebrew
character sets are bi-directional.

The ancient Arabic script was a derivative of the Nabataean consonantal script, which
was used two thousand years ago. Later, Mesopotamian Kufic scripts influenced it. From
the eleventh century onwards, a flowing cursive style was developed, and it became the
Arabic script commonly used. This script underlies most contemporary type-fonts.

Arabic script is used for a number of important languages: Persian, Urdu, Pashto,
Baluchi, Kurdish, Lahnda, Kashmiri, Sindhi and Uighur.

Since the phonological inventories between these languages may differ a lot from those
of Arabic, the script has had to be augmented and adapted to meet the new demands
made upon it. In some languages, such as Sindhi, certain Arabic letters are adapted to
denote multiple sounds. On the other hand, in some languages there are a lot of
redundant letters – in Persian there are four Arabic letters pronounced exactly in the
same way.

Arabic script has been used in many other languages. However, many of them have
abandoned Arabic script for Latin. Among them there are languages like Indonesian
(Malay), Hausa, Somali, Sudanese, Swahili and Turkish. Partially this is explained by the
last 400 years' aggressive expansion of the European cultures. In addition Turks wanted
to modernize the country at the beginning of the 20th century and they adopted the Latin
alphabet. Several Caucasian languages, e.g. Chechen, Kabardian, Lak, Avar, Lezgi used

20 Multilizer 5.1 - Developer’s Guide

the Latin alphabet for a while. Due to the expansion of Russian power, the Cyrillic
alphabet was implemented.

Arabic script is used nowadays in a widespread area from the Atlantic coast in Morocco
to India. It is very probable that these areas remain as users of this script. This area has
been politically quite unstable, but economical growth is expected, thus bringing
information technology to these countries. This will open a need for supporting Arabic
script in software.

Unicode
Single-byte and double-byte character set trouble
Single-byte character sets are able to support a maximum of 256 different characters.
Originally this was sufficient to cover English and some other European languages.

However, there are many languages using Latin characters with diacritics. Because there
was no place for them, different code pages were implemented. Therefore, e.g.,
Romanian uses a different code page than French. To make the software run in both
languages, the code page had to be changed, which often meant rebooting computer or
installing a specific OS.

For Far Eastern languages Double-byte character sets were implemented. The scripts of
these languages contained more than 256 ideographs. Thus the characters were
encoded in two bytes.

These single or double-byte character sets had the problem that one code (such as Hex
67) could hold different characters, according to the code page used. Therefore Unicode
was introduced.

Universal character encoding system
Unicode is a fixed-width, 16-bit worldwide character encoding system developed by the
Unicode Consortium and endorsed by Window NT. It is a "universal" character set of
approximately 35,000 characters encompassing all major character set standards.

In Unicode, each character has a unique code.

The Unicode Consortium, a nonprofit computer industry organization, continues to
maintain and promote the system.

You can get more info on Unicode at: http://www.unicode.org

Text Input
Western languages
Western alphabets are based on characters. There are normally a very restricted number
of characters with which all the words in a western language can be formed. Therefore
most characters can be input with one character stroke on the keyboard.

Different Western languages use keyboard layouts that differ slightly from each other.
This is due to the input of some language specific characters (Cf. previous chapter).

Multilizer is able to change the keyboard layout to match the current language being
edited.

In addition Multilizer helps in entering Latin characters with diacritics: you can use existing
characters or define your own compose character sequences for entering accented
characters. This makes the working easier, e.g., with a US keyboard.

 Multilizer 5.1 - Developer’s Guide 21

Far Eastern languages
Far Eastern languages need a specific way for inputting ideographs. There might be
thousands of characters that should be input. For that reason, Far Eastern Windows
language editions ship with Input Method Editors (IME).

Using the IME, users can compose each character in one of several ways: by radical, by
phonetic representation or by the character's numeric code-page index.

Multilizer uses the IME provided by Far Eastern Windows language editions for inputting
those languages.

Middle Eastern languages
Middle Eastern languages have a restricted number of characters in their alphabets, like
Western languages. The problem of inputting characters in these languages lies in the
following reasons.

• Text is written from right to left, numbers from left to right

• Arabic characters obtain different forms depending on where they are located in the
word (initial character, in the middle of the word, final character or isolated character).

Arabic or Hebrew language editions of Windows are needed for inputting Middle Eastern
characters in Multilizer.

For more information on editing a specific language in Multilizer, cf. Multilizer
documentation.

Country specific items
Besides making software work in different languages, software must also be fine-tuned to
work with country specific standards. Country specific standards are later referred as
locale data.

In fact locale information tells what language is spoken in the specified locale. Therefore
the language can be considered as a subset of the locale.

In Multilizer a specific locale is referred to using the language and the country's name in
parenthesis. Thus, selecting a locale like e.g., French (Canada), means that the country
is Canada and the language is French.

More about localization
The following list contains various sources on where to get more information about
localization:

• Developing International Software for Windows 95 and Windows NT, Nadine Kano,
Microsoft Press, 1995. This is an excellent book about developing international
software.

You can find this book on MSDN, too.

• A Practical Guide to Localization, Bert Esselink, John Benjamins Publishing
Company, 2000.

• WIN32 API documentation

• http://www.xerox-emea.com/globaldesign/

http://www.xerox-emea.com/globaldesign/

22 Multilizer 5.1 - Developer’s Guide

II
Part II: Tutorials

This part contains the platform specific tutorials that go through the localization process of
a sample application.

 Multilizer 5.1 - Developer’s Guide 23

6
.NET

This tutorial discusses localization of software in .NET. Sample codes are written for C#
and Visual Basic .NET.

Before localizing any software in .NET, you should be familiar with the Microsoft
localization model in .NET environment. Because Multilizer supports this model, the most
important parts of it are discussed in the Internationalization part of this tutorial.

Visual Studio .NET Project File Localization
Visual Studio .NET projects contain the resource data in the resource files (e.g. .resx or
.txt). Multilizer creates the localized resource files from the original files. The following
picture describes the localization process.

Visual Studio .NET
project file

French resource
or satelite files

Germanresource
or satelite files

English resource
or satelite files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 10 Visual Studio .NET project file localization process

The programmer uses Multilizer to extract strings from the original resource file(s)
belonging to the project (1). Multilizer saves these strings to the project file. The
programmer sends the project file to the translator(s) that use Multilizer to translate the
project file (2). The programmer uses Multilizer or Builder to create the localized resource
files and/or the localized satellite assembly files (3). As a result there will be one resource
file or one satellite assembly file for each localized language.

Multilizer creates subdirectories under original project file folder containing the localized
satellite assembly files. I.e. there might be subfolders called
..\en\MySample.resources.dll (English) and
..\fi\MySample.resources.dll (Finnish).

When deploying the application you can either deploys the original application file with
the localized satellite assembly (e.g. de\MySample.resources.dll), or you can link
the localized resource file (e.g. MySample.de.resources) to the original application
file.

The following example figure shows the files that Multilizer uses on the Visual Studio
.NET project file localization process.

24 Multilizer 5.1 - Developer’s Guide

sample.csproj sample.mpr sample.en.resx
sample.de.resx
sample.fr.resx

sample.en.resources
sample.de.resources
sample.fr.resources

1 2 3
VS.NET Project file Project file ML creates localized files ML compiles the localized files

en\sample.resources.dll
de\sample.resources.dll
fr\sample.resources.dll

4
ML creates the satelite files

Figure 11 The files of the Visual Studio .NET project file localization process

Using this localization process Multilizer globalizes the form and strings resources of any
.NET application written in C# or Visual Basic.

.NET Resource File Localization
If you do not use Visual Studio .NET but the command line tools of the .NET SDK or
some other .NET development tool, you have to use the resource file localization
process. The following picture describes the localization process.

.NET
resource file

French
resourcefiles

German
resource files

English
resource files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 12 .NET resource file localization process

The programmer uses Multilizer to extract strings from the original resource file(s) (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource files (3). As a result there will be one
resource file for each localized language.

When deploying the application you can either link the localized resource file (e.g.
MySample.de.resources) to the original application file or create a satellite assembly
file containing the localized resource file(s).

The following example figure shows the files that Multilizer uses on the .NET resource file
localization process.

sample.resx
or
sample.txt

sample.mpr sample.en.resx
sample.de.resx
sample.fr.resx

sample.en.resources
sample.de.resources
sample.fr.resources

1 2 3
Resource file Project file ML creates localized files ML compiles the localized files

Figure 13 The files of the .NET resource file localization process

Using this localization process Multilizer globalizes all strings found from the text resource
files (.txt) and from the .NET resource files (.resx).

English Application
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize.
<mldir>\NET\Samples\Tutorial\cs\Dcalc.csproj (C#) and
<mldir>\NET\Samples\Tutorial\vb\Dcalc.vbproj (Visual Basic) contain the
project file of the Dcalc sample application. Compile and run the application. By default,
Dcalc uses English language.

 Multilizer 5.1 - Developer’s Guide 25

The application should look like this:

Figure 14 Dcalc application using an English user interface

This version of Dcalc is not internationalized and many of the locale-dependent features
are hard-coded. For example the currency symbol is always pounds, distances are given
in kilometers and speed in kilometers per hours.

Internationalization
Microsoft .NET localization model is based on localizing resources. This means that
before localizing the software, all culture (locale) dependent data must be separated from
the code and put in resource files. This is called internationalization. Internationalization
tasks are discussed more in detail in chapter Overview.

Internationalization of forms
Internationalization of forms is easy, because .NET generates automatically the source
code for them. To internationalize a form, you just need to set the Localizable property of
the form to true. .NET will automatically create a resource file (.resx) for the forms
elements and create the code that references to it.

Figure 15 To localize the form set the Localizable property to true.

26 Multilizer 5.1 - Developer’s Guide

Internationalization of code
If there are hard-coded strings in the user-written part of code, you have to do the
internationalization manually. You will need to create a resource file for strings, and call
the internationalized strings from your code.

The first step is to create a resource file for the string. Choose Project | Add New Item
from the Visual Studio .NET. From the Template list select Assembly Resource File.
Rename the file to Resource.resx. Finally press the Open button to create the file.
Visual Studio .NET create an empty resource file.

Let’s add a string to the resource file. Double click Resource.resx from the Solution
Explorer tree. This opens the resource table editor. Type “Language” to the first row of
the name column and “English” to the value column. This adds one row the file where
“Language” is the key and “English” is the translation.

Figure 16 Resource file after adding the first item.

During this internationalization process we are going to add several new items to the
resource file.

To access the resource file during the run time we have to add a Resource Manager
object to the application. Add the following lines to the MainForm class.

C# public class MainForm : System.Windows.Forms.Form
{
 private ResourceManager rm;
 ...
}

...

private void MainForm_Load(object sender, System.EventArgs e)
{
 rm = new ResourceManager("Dcalc.Resource", this.GetType().Assembly);
 ...
}

Visual Basic Public Class mainform
 Inherits System.Windows.Forms.Form

 Dim rm As New Resources.ResourceManager("Dcalc.Resource",
GetType(mainform).Assembly)
 ...
End Class

The rm object is used to get translation from the resource file.

Open the Click event of the aboutMenu. It contains two hard coded strings. To remove
the hard coding we have to add the string to the resource file and replace the direct
access to the string by the access to the resource file. Add both strings to the resource
file and wrap them by the rm.GetString method.

C# private void aboutMenu_Click(object sender, System.EventArgs e)
{
 MessageBox.Show(
 rm.GetString("Dcalc is a multilingual application that calculates the
average driving time"),
 rm.GetString("About Dcalc"),
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

 Multilizer 5.1 - Developer’s Guide 27

Visual Basic Private Sub AboutMenu_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AboutMenu.Click
 MsgBox(rm.GetString("Dcalc is a multilingual application that
calculates the average driving time"), vbOKOnly, rm.GetString("About
Dcalc"))
End Sub

If you look at the calculate event you will see that the following lines are used to format
the message string that show the driving time to the user.

C# MessageBox.Show(
 "The avarage driving time is " + Convert.ToString(hours) + " hours and
" +
 Convert.ToString(minutes) + " minutes.",
 "Driving time",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

Visual Basic MsgBox("The average driving time is " + Convert.ToString(hours) + " hours
and " + Convert.ToString(minutes) + " minutes", vbOKOnly, "Driving time")

The above code contains both hard coded string and bad design. First of all the message
is split into several string that do not contain a real sentence. That’s why it is hard to
translate them. Also the code assumes that the word order is text plus hours plus some
other text plus minutes plus some other text. This works with English but may not work
with some other language. That’s why we have to use the Format method of the String
class. It uses a message pattern and variables.

C# MessageBox.Show(
 String.Format(
 rm.GetString("The avarage driving time is {0} hours and {1}
minutes."),
 Convert.ToString(hours),
 Convert.ToString(minutes)),
 rm.GetString("Driving time"),
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

Visual Basic MsgBox(String.Format(rm.GetString("The average driving time is {0} hours
and {1} minutes"), hours, minutes), vbOKOnly, rm.GetString("Driving
time"))

The calculate event shows a message if the distance value is invalid. It also contains hard
coded string and a dynamic message.

C# MessageBox.Show(
 distanceText.Text + " is not a valid distance!",
 "Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

Visual Basic MsgBox(distanceText.Text + " is not a valid distance!", vbOKOnly,
"Error")

Use the same approach as with the result message.
C# MessageBox.Show(

 String.Format(
 rm.GetString("{0} is not a valid distance!"),
 distanceText.Text),
 rm.GetString("Error"),
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

28 Multilizer 5.1 - Developer’s Guide

Visual Basic MsgBox(String.Format(rm.GetString("{0} is not a valid distance!"),
DistanceText.Text), vbOKOnly, rm.GetString("Error"))

Resource the message box for the invalid speed in the same way.

The Load event initializes some user interface items such as the speeding file label and
the current time label.

C# private void MainForm_Load(object sender, System.EventArgs e)
{
 speedingFine.Text = "£500";
 currentTime.Text = DateTime.Now.ToString();
}

Visual Basic Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 speedingFine.Text = "£500"
 currentTime.Text = DateTime.Now.ToString()
End Sub

The current time is properly formatted. The ToString method converts the time to a string
using the default formatting rules of the current culture. However the fine is hard code to
£500. It can be fixed using the int.ToString method.

In US miles are used instead of kilometers. The code below checks if the current culture
is English (US). If it is the labels and initial values are set to US system. Otherwise the
metric system is used.

C# private void MainForm_Load(object sender, System.EventArgs e)
{
 rm = new ResourceManager("Dcalc.Resource", this.GetType().Assembly);

 int fine = 500;
 speedingFine.Text = fine.ToString("C");
 currentTime.Text = DateTime.Now.ToString();

 currentLocale.Text = CultureInfo.CurrentCulture.NativeName;
 currentLanguage.Text = rm.GetString("Language");

 if (Application.CurrentCulture.LCID == 0x0409)
 {
 distanceLabel.Text = rm.GetString("in miles");
 speedLabel.Text = rm.GetString("mph");
 distanceText.Text = "100";
 speedText.Text = "55";
 }
 else
 {
 distanceLabel.Text = rm.GetString("in kilometres");
 speedLabel.Text = rm.GetString("km/h");
 distanceText.Text = "120";
 speedText.Text = "100";
 }
}

Visual Basic Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 SpeedingFine.Text = FormatCurrency(500)
 CurrentTime.Text = FormatDateTime(Now)

 CurrentLocale.Text = Application.CurrentCulture.NativeName()
 CurrentLanguage.Text = rm.GetString("Language")

 If Application.CurrentCulture.LCID = &H409 Then
 DistanceLabel.Text = rm.GetString("in miles")
 SpeedLabel.Text = rm.GetString("mph")

 DistanceText.Text = "100"

 Multilizer 5.1 - Developer’s Guide 29

 SpeedText.Text = "55"
 Else
 DistanceLabel.Text = rm.GetString("in kilometres")
 SpeedLabel.Text = rm.GetString("km/h")

 DistanceText.Text = "120"
 SpeedText.Text = "100"
 End If
End Sub

Now we have fully internationalized the source code. Make sure that you added every
single string inside the rm.GetString method to the resource file.

In order to test different locale we add one command line parameter to the application.
The parameter is the culture id that specifies the culture that the application uses.

C# static void Main(string[] args)
{
 if (args.Length > 0)
 {
 CultureInfo ci = new CultureInfo(args[0]);

 Thread.CurrentThread.CurrentUICulture = ci;

 if (!ci.IsNeutralCulture)
 Thread.CurrentThread.CurrentCulture = ci;
 }

 Application.Run(new MainForm());
}

Visual Basic Public Sub New(ByVal culture As String)
 If culture <> "" Then
 Try
 Thread.CurrentThread.CurrentUICulture = New CultureInfo(culture)
 Catch e As ArgumentException
 MessageBox.Show(Me, e.Message, "Bad command-line argument")
 End Try
 End If

 InitializeComponent()
End Sub

<System.STAThreadAttribute()> _
Public Shared Sub Main()
 Dim args() As String = System.Environment.GetCommandLineArgs()
 Dim strCulture As String = ""
 If args.Length = 2 Then
 strCulture = args(1)
 End If

 Application.Run(New mainform(strCulture))
End Sub

Although not related to internationalization, .NET support for Unicode® makes
localization. There are no more code-page related issues, such as non-readable
characters appearing in the software.

Creating a Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

30 Multilizer 5.1 - Developer’s Guide

Figure 17 The Select Target sheet is used to specify the application file to be localized.

This sheet specifies the location of your application. Choose the
<mldir>\net\Samples\Tutorial\cs (C#) or
mldir>\net\Samples\Tutorial\vb (Visual Basic) subfolder. Project Wizard detects
the platform and target types. The Platform type should be .NET and the Target type
should be Visual Studio .NET project file. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

 Multilizer 5.1 - Developer’s Guide 31

Figure 18 English and Finnish added to the project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

32 Multilizer 5.1 - Developer’s Guide

Figure 19 The project grid

If you cannot see any strings make sure that you set the Localizable property of the main
form to true. Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project save it by choosing File | Save.

Before we can create the localized files you have to set the .NET settings. Choose Tools
| Options | .NET. The .NET Options dialog will appear. Select the Tools sheet and make
sure that the both paths are properly set. If they are empty press the Default button. This
tries to detect them. If the detection fails you have to manually set the file paths.

Figure 20 .NET Options dialog

 Multilizer 5.1 - Developer’s Guide 33

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized satellite assembly files (.resources.dll) in the language specific
sub-directories (‘en’ and ‘fi’). In order to use the satellite assembly files they must locate
on the sub directories of the main assembly file (Dcalc.exe). By default Visual Studio
.NET place the EXE file to the bin or bin\Debug subdirectory. When running the
application from Multilizer, Multilizer copies the application file to the project’s main
directory (e.g. bin\Debug\Dcalc.exe -> Dcalc.exe). Run the localized application by
right-clicking the column header (e.g. Finnish) and by choosing Run.

Figure 21 Localized Dcalc application

For more information about translating a project with Multilizer, see the Translator’s
Manual.

34 Multilizer 5.1 - Developer’s Guide

7
Visual C++

In this chapter we are going to create a localized Visual C++ application. Creating an
application for Windows CE with Embedded Visual C++ is similar to creating an
application for Windows with Visual C++ so this tutorial applies to Windows CE
application localization as well. The application will be a simple driving-time calculator,
Dcalc, which a user can use to calculate the average driving time for a given distance.
You can actually use almost whatever application, library or component file and still follow
the same steps mentioned in this tutorial to achieve a localized application.

The Dcalc application is very simple but still uses most features of Multilizer. The creation
of the application is divided into several lessons, each covering one or more Multilizer
functions.

Multilizer supports two kinds of localization of Windows C++ applications. They are binary
localization and resource file localization. The following two chapters will describe these
both.

Binary Localization
Binary applications, libraries or components contain the resource data in the application
files (e.g. .exe), library files (e.g. .dll) or component files (e.g. .ocx). Multilizer creates the
localized application files from the original file. The following picture describes the binary
localization process.

Application
Native resources

Application
French resources

Application
German resources

Application
English resources

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file Application

English resources

German resources

French resources

or

Figure 22 Binary localization process

The programmer uses Multilizer to extract strings from the original application file (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (1). The programmer uses
Multilizer or Builder to create the localized application files (2). As a result there will be
one application file for each localized language and/or a single binary file containing all
languages.

Multilizer creates subdirectories under original file folder containing the localized file(s).
I.e. there might be subfolders called ..\en\<localized file> and ..\fi\<localized file>. Replace
the original file in the original program folder with the localized file from the localization
folder and the next time you start the application the localized strings replace the native
strings.

The following example figure shows the files that Multilizer uses on the C++ binary
localization process in Windows.

 Multilizer 5.1 - Developer’s Guide 35

sample.exe sample.mpr en/sample.exe
de/sample.exe
fr/sample.exe

1 2
Application file Project file Localized application files

en/sample.ENU
de/sample.DEU
fr/sample.FRA

all/sample.exe

Figure 23 The files of the binary C++ localization process in Windows

When deploying the application you can either deploy the localized binary file (e.g.
de\sample.exe), the multilingual binary file (all\sample.exe), or the original binary
file (e.g. sample.exe) and the localized resource DLL(s) (e.g. de\sample.DEU).

Using binary localization Multilizer globalizes the dialog, menu, string and accelerator
resources of any Windows or Windows CE application.

Besides applications built with C++, Multilizer binary localization type can be applied to
applications compiled with other compilers. Multilizer automatically detects projects
compiled with Delphi, C++Builder and Visual Basic. Refer to the corresponding tutorials, if
you localize applications with any of the aforementioned compilers.

The binary localization process is described in more detail in chapter 5 and 6.

Resource File Localization
Application source code contains resource files (.rc). These files contain the data that
needs to be localized. When linking the application the linker combines the compiled
code and the resource data to create binary applications, libraries or components.
Multilizer can create localized resource files from the original resource file. This
secondary localization technology is called source localization. The following picture
describes the source localization process.

Native
resource files

French
resource files

German
resource files

English
resource files

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

4

Compiler

Programmer

Application
French resources

Application
German resources

Application
English resources

Application
English resources

German resources

French resources

or

Figure 24 Source localization process

The programmer uses Multilizer to extract strings from the original resource file (1).
Multilizer saves these strings to a project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (1). The programmer uses
Multilizer or Builder to create the localized resource files (2). The programmer uses
resource compiler to add the localized resource data to the application file (3). As a result
there will be one application file for each localized language.

The following example figure shows the files that Multilizer uses on C++ source
localization process in Windows.

sample.rc sample.mpr en/sample.rc
de/sample.rc
fr/sample.rc

en/sample.exe
de/sample.exe
fr/sample.exe

1 2 3
Resource file Project file Localized resource files Localized application files

Figure 25 Different phases of C++ source localization process in Windows

When deploying the application you deploy the localized binary file (e.g.
de\sample.exe).

36 Multilizer 5.1 - Developer’s Guide

Using source localization Multilizer globalizes dialog, menu, string and accelerator
resources of any Windows or Windows CE application.

Source localization process is described in more detail in chapters 5 and 7.

English Application
We could start from scratch but in most cases it is a completed application or at least
some specific application under construction that you want to globalize. This is what we
are going to do. The <mldir>\VCPP\Samples\Tutorial\dcalc.dsw contains the
project file of Dcalc sample application for Visual C++. Compile and run the application.

The application should look like this:

Figure 26 Driving time calculator with English user interface

The <mldir>\EVCPP\Samples\Tutorial\dcalc.vcw contains the project file of
Dcalc sample application for Embedded Visual C++. Compile and run the application.

The application should look like this:

Figure 27 English Visual C++ Windows CE application

The user interface language is UK English and the applications use the UK format with
currency, date and time. In the following chapters we will turn Dcalc into a truly
multilingual application, step-by-step.

 Multilizer 5.1 - Developer’s Guide 37

Internationalization
This chapter describes the binary internationalization process. Internationalization is the
process of generalizing a product so that it can handle multiple languages and cultural
conventions without the need for re-design; re-engineering source code so that products
and applications are compatible with country-specific operating systems and software.
Internationalization (I18N) takes place at the level of program design and document
development.

Open the Tutorial application, <mldir>\VCPP\Samples\Tutorial\dcalc.dsw, or
<mldir>\EVCPP\Samples\Tutorial\dcalc.vcw.

Study the source code of the application to familiarize yourself with it. It is not a complex
application, so you should get the idea fairly quickly.

The most important part of the internationalization (i18N) is resourcing. This means
removing all hard coded strings from the application’s source code. Traditionally hard
coded strings are turned into resources by moving the strings from the actual code into
the resource strings.

Select the ResourceView sheet. Select the dcalc resource leaf from the tree and click the
right mouse button. Choose Insert. The Insert Resource dialog appears.

Figure 28 Insert Resource dialog box

Select String Table resource and press New. The String Table editor appears. Add the
following resource strings to the table.

Figure 29 String Table editor

The next step is to set the right value to the user interface labels. The original application
shows the speeding fine in Pounds, the date and time in UK format, the locale and
language labels have been hard coded to English (UK) and English. In addition the
application requires the input in kilometers and in kilometers per hour.

38 Multilizer 5.1 - Developer’s Guide

An essential part of internationalization is to make the code locale independent. This
means that the code is not hard coded to a single locale (e.g. English (UK)) but works
with any locale.

Windows contains NLS API. It is a collection of locale functions that have access to the
locale database. GetLocaleInfo function is used to get locale specific data such as
measurent system, data format, etc.

To prepare your code to locale enabling we have to write some helper functions.
Visual C++ void CDcalcDlg::SetLabel(int control, int resourceId)

{
 CString str;

 str.LoadString(resourceId);
 SetDlgItemText(control, str);
}

void CDcalcDlg::SetLocaleLabel(int control, int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 SetDlgItemText(control, str);
 free(str);
}

int CDcalcDlg::GetLocaleInfoInt(int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);
 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 int value = atoi(str);
 free(str);

 return value;
}

EVC void CDcalcDlg::SetLabel(int control, int resourceId)
{
 CString str;

 str.LoadString(resourceId);
 SetDlgItemText(control, str);
}

void CDcalcDlg::SetLocaleLabel(int control, int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 SetDlgItemText(control, str);
 free(str);
}

int CDcalcDlg::GetLocaleInfoInt(int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);
 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 int value = _wtoi(str);
 free(str);

 return value;
}

 Multilizer 5.1 - Developer’s Guide 39

SetLabel function sets the label of a user interface element to a value found from the
resource string. SetLocaleLabel sets the label of a user interface element to a value
found from the locale database. GetLocaleInfoInt function returns an integer value from
the locale database.

Now we can update the user interface items to match the current locale. Keep in mind
that the system has a default locale. This locale is given to all applications currently
running. You can change the default locale from the Control Panel.

OnInitDialog method is used to initialize the dialog box. Add the following code to the end
of the OnInitDialog method.

setlocale function sets the formatting functions of the C run-time library to use the default
locale. The original Dcalc uses kilometers and km/h. In United States miles and miler per
hour are used. LOCALE_IMEASURE value of the locale database contains the measurement
system of the locale. GetLocaleInfoInt get the measurement system. If the system is
metric kilometers are used otherwise miles are used.

There are four different ways to show the currency value. They are 500 $, 500$, $500
and $ 500. You can but the currency label before or after the value and use a space
between or not. LOCALE_ICURRENCY value if the locale database contains this
information. The switch-case block formats the speeding fine according the current locale.

CTime class has the Format method that returns the date and time as a string that has
been formatted according to the current locale.

The final step is to update the locale and language labels. LOCALE_SLANGUAGE
returns the current locale as a string. IDS_LANGUAGE resource string contains the name
of the language in its own language (e.g. English, Deutch, suomi).

Visual C++ BOOL CDcalcDlg::OnInitDialog()
{
 …
 // Sets the locale depend format function to use the default locale

 setlocale(LC_ALL, "");

 // Gets the measurement system
 // Sets the Driving distance label: km or miles
 // and the Average driving speed label: km/h or mph

 if (GetLocaleInfoInt(LOCALE_IMEASURE) == 0)
 {
 // Metric

 SetLabel(IDC_DISTANCE, IDS_METRIC_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, "100");
 SetLabel(IDC_SPEED, IDS_METRIC_SPEED);
 }
 else
 {
 // US

 SetLabel(IDC_DISTANCE, IDS_US_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, "65");
 SetLabel(IDC_SPEED, IDS_US_SPEED);
 }

 // Set the fine value: $500, 500 mk, etc

 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, NULL,
0);
 LPTSTR currStr = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, currStr, len);

 LPTSTR buffer = (LPTSTR)malloc((strlen(currStr) + 5)*sizeof(TCHAR));

40 Multilizer 5.1 - Developer’s Guide

 switch (GetLocaleInfoInt(LOCALE_ICURRENCY))
 {
 case 0:
 sprintf(buffer, "%s500", currStr);
 break;

 case 1:
 sprintf(buffer, "500%s", currStr);
 break;

 case 2:
 sprintf(buffer, "%s 500", currStr);
 break;

 case 3:
 sprintf(buffer, "500 %s", currStr);
 break;
 }

 SetDlgItemText(IDC_FINE, buffer);
 free(currStr);
 free(buffer);

 // Set the date and time

 SetDlgItemText(IDC_DATETIME, CTime::GetCurrentTime().Format("%c"));

 // Sets the current locale and user interface language

 SetLocaleLabel(IDC_LOCALE, LOCALE_SLANGUAGE);
 SetLabel(IDC_LANGUAGE, IDS_LANGUAGE);

 return TRUE;
}

OnInitDialog function in the Embedded Visual C++ is almost identical. We use
COleDateTime instead of CTime.

EVC BOOL CDcalcDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE);
 SetIcon(m_hIcon, TRUE);

 // Gets the measurement system
 // Sets the Driving distance label: km or miles
 // and the Average driving speed label: km/h or mph

 if (GetLocaleInfoInt(LOCALE_IMEASURE) == 0)
 {
 // Metric

 SetLabel(IDC_DISTANCE, IDS_METRIC_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, L"100");
 SetLabel(IDC_SPEED, IDS_METRIC_SPEED);
 }
 else
 {
 // US

 SetLabel(IDC_DISTANCE, IDS_US_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, L"65");
 SetLabel(IDC_SPEED, IDS_US_SPEED);
 }

 // Set the fine value: $500, 500 mk, etc

 Multilizer 5.1 - Developer’s Guide 41

 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, NULL,
0);
 LPTSTR currStr = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, currStr, len);

 wchar_t buffer[20];

 switch (GetLocaleInfoInt(LOCALE_ICURRENCY))
 {
 case 0:
 swprintf(buffer, L"%s500", currStr);
 break;

 case 1:
 swprintf(buffer, L"500%s", currStr);
 break;

 case 2:
 swprintf(buffer, L"%s 500", currStr);
 break;

 case 3:
 swprintf(buffer, L"500 %s", currStr);
 break;
 }

 SetDlgItemText(IDC_FINE, buffer);
 free(currStr);

 // Set the date and time

 SetDlgItemText(IDC_DATETIME,
COleDateTime::GetCurrentTime().Format());

 // Sets the current locale and user interface language

 SetLocaleLabel(IDC_LOCALE, LOCALE_SLANGUAGE);
 SetLabel(IDC_LANGUAGE, IDS_LANGUAGE);

 CenterWindow(GetDesktopWindow());

 return TRUE;
}

The CalculateButtonClick event needs a little bit more rewriting. Let’s study the code that
generates the driving distance message:
text = CString("The avarage driving time is ") +
 itoa(hours, buffer1, 10) +
 " hours and " +
 itoa(minutes, buffer2, 10) +
 " minutes.";

This seems to be just OK, but it will actually make the localization hard or even
impossible. The reason is that the above logic assumes that the message always starts
with the “The average driving time is “ string, and then contains the hours, hour label,
minutes and minute label. However, not all languages use the same order of words in a
sentence. For example, the order might be: minute label, minutes, hour label, hours and
text part. Reordering of the parts of the message is impossible if we use the code shown
above.

Fortunately we can use CString’s Format function. It uses message pattern that contains
placeholders for the dynamic parameters. At run-time the function combines the pattern
with the parameters to compose the message. Because the pattern is a single string it
can be added to the resource strings, and it can then be translated as a single item. The
following code contains the internationalized CalculateButtonClick event.
void CDcalcDlg::OnCalculate()

42 Multilizer 5.1 - Developer’s Guide

{
 // Calculates the driving time and shows it in a message box

 CString text;
 CString distanceS;
 CString speedS;

 GetDlgItemText(IDC_DISTANCE_EDIT, distanceS);
 GetDlgItemText(IDC_SPEED_EDIT, speedS);

 int distance = atoi(distanceS);
 int speed = atoi(speedS);

 if (distanceS == "" || distance < 0)
 text.LoadString(IDS_INVALID_DISTANCE);
 else if (speedS == "" || speed <= 0)
 text.LoadString(IDS_INVALID_SPEED);
 else
 {
 int hours = distance/speed;
 int minutes = (int)(((double)distance/speed - hours)*60);

 text.Format(IDS_RESULT, hours, minutes);
 }

 CString str;

 str.LoadString(IDS_INFORMATION);

 MessageBox(text, str);
}

The dialog resource contains several strings that are obsolete because they all get set at
run-time. A good practice is to replace these strings with “dummy“ strings and then
exclude these strings from the localization project.

Figure 30 Replace dynamic items with dummy strings

Most translations get longer when translated from English to other European languages.
The final internationalization step is to change the user interface such way that it can
accommodate long translations. The easiest way is to set every user interface item as
wide as possible. The following figure contains the reworked user interface.

 Multilizer 5.1 - Developer’s Guide 43

Figure 31 Resize dynamic items for long translations

Now we are ready to create a Multilizer project for Dcalc.

Creating a Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

Figure 32 The Select Target sheet is used to enter the file to be localized

This sheet specifies the directory where your application is located. Choose the
<mldir>\VCPP\Samples\Tutorial or <mldir>\EVCPP\Samples\Tutorial
subfolder of your Multilizer setup. If your application is located in multiple directories you
can later add more directories. Project Wizard detects the platform and target types. The

44 Multilizer 5.1 - Developer’s Guide

Platform type should be Windows and the Target type should be C++ binary file. If they
are wrong, check the right types.

If you want to use resource localization set the Target type to Visual C++ project file.

Here you have different ‘Target type’ choices what to localize depending whether you are
going to localize a Windows application that has been made with C++ compiler or other
development tool. If some other tool is used, refer to the corresponding tutorial.

If software was built for Windows CE, Multilizer should detect it automatically and offer in
the above dialog ‘Windows CE’ platform type.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 33 English and Finnish added to the project file

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

 Multilizer 5.1 - Developer’s Guide 45

Figure 34 The project view grid.

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.

When you have translated the project save it by choosing File | Save. Then create the
localized application files by choosing Project | Build Localized Files. This creates the
localized application files (.exe) in the language specific sub-directories (‘en’ and ‘fi’).

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run.

Figure 35 Localized Dcalc application (Windows)

Localized Windows CE version should look like this:

46 Multilizer 5.1 - Developer’s Guide

Figure 36 Localized Dcalc application (Windows CE)

By default Multilizer creates the localized application files. You can set it to create also
the localized resource DLLs (e.g. .ENU) and the multilingual application file (e.g.
all\dcalc.exe) that contains resources of all languages of the project. Select dcalc.exe
from the left-hand side of the tree view and right-click to open the popup menu. Choose
Edit target to open the C/C++ Binary File Target dialog.

Figure 37 The C/C++ Binary File Target dialog

Select the Localization sheet and check the Resource files and the Multilingual file check
boxes. Next time you build localized files Multilizer also creates resource DLLs and a
multilingual application file.

For more information about translating a project with Multilizer, see the Translator’s
Manual.

 Multilizer 5.1 - Developer’s Guide 47

8
Visual Basic

In this tutorial we are going to create a localized application. The application will be a
simple driving-time calculator, Dcalc which a user can use to calculate the average
driving time for a given distance.

The application is very simple but still it uses most features of Multilizer.

Visual Basic 6.0 and Embedded Visual Basic 3.0 are the environments for the examples
of this chapter. The usage of some other versions of the aforementioned environments is
almost identical. Some of the menu options may vary.

How to use Multilizer
When you create a new Visual Basic localization project with Multilizer, the Project
Wizard will show the following screen after the welcome screen.

Figure 38 Windows localization project types

Before continuing with the Project Wizard, you have to know which of the different Project
Types available is suitable for your Visual Basic project. This and the following chapter
will explain the possibilities.

Three platform types contains Visual Basic targets types: Windows, Windows CE and
Windows 3.x. When specifying the Visual Basic project directory (i.e. the directory where
your Visual Basic project is located), you have to also specify the Target type. Depending
on the target type, you will either do source localization or component localization (See
the table below). The following chapter will explain the difference between source
localization and component localization.

Following Target types are available:

48 Multilizer 5.1 - Developer’s Guide

Platform type Target Type Description

Windows Visual Basic binary file A binary localization project for 32-bit
Visual Basic 4.0, 5.0 and 6.0 projects.

Windows Visual Basic project file A source localization project for 32-bit
Visual Basic 4.0, 5.0 and 6.0 projects.

Windows Visual Basic project file with
Multilizer components

A component localization project for 32-bit
Visual Basic 4.0, 5.0 and 6.0 projects.
Multilizer OCX adds multi-language
support to the software.

Multilizer OCX was included to previous
Multilizer verison. It is not included to
current verison.

Windows CE Embedded Visual Basic
project file

A source localization project for Visual
Basic software built with Embedded
Visual Basic.

Windows 3.x Visual Basic project file A source localization project for 16-bit
Visual Basic 4.0 projects.

Windows 3.x Visual Basic project file with
Multilizer components

A component localization project for 16-bit
Visual Basic 4.0. Multilizer OCX adds
multi-language support to the software.

Multilizer OCX was included to previous
Multilizer verison. It is not included to
current verison.

Localization process
From the different localization types available, source localization is recommended.
Resulting localized executables will not differ in size and the performance will be the
same as of the native software.

If it’s necessary to create multilingual software with dynamic language-change at run-
time, then you must use component localization.

It is possible to write a Visual Basic application that gets all the user interface strings from
string resources. However this is a rather time-consuming way to write Visual Basic
applications. If you have done the work of isolating strings in string resources, you can
use the binary localization method (described in the C++ tutorial) to localize the software.

Source localization
Visual Basic source code contains project, form and module files. Multilizer creates the
localized source code files from the original source files. The following picture describes
the Visual Basic localization process.

 Multilizer 5.1 - Developer’s Guide 49

Native
source files

French
source files

German
source files

English
source files

1 2 3

Language
Manager

Language
Manager

Builder
or LM

Programmer ProgrammerTranslators

Project file
Translated
Project file

4

Compiler

Programmer

Application
French strings

Application
German strings

Application
English strings

Figure 39 The Visual Basic localization process

The programmer uses Multilizer to extract strings from the resource source file (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource files (3). As a result there will be one
application file for every language or one localized resource file for each localized
language.

Windows
The following figure shows the files that Multilizer uses in the Visual Basic localization
process in Windows.

sample.mpr en/sample.vbp
de/sample.vpb
fr/sample.vbp

en/sample.exe
de/sample.exe
fr/sample.exe

1 2 3
Source files Project file Localized source files Localized application files

sample.vbp
*.frm
*.bas

Figure 40 The files of the source code localization process of Visual Basic application

The programmer starts Multilizer‘s Project Wizard and selects a Visual Basic project file
(.vbp) to be globalized. Multilizer extracts the string data from the form (.frm) and the
source code (.bas) files to create the project file (1). The translators translate the projects.
The programmer uses Multilizer or Builder to create the localized project and the source
code files (2). The programmer uses Visual Basic to compile these projects file into binary
files (3).

Windows CE
The following figure shows the files that Multilizer uses in the Visual Basic localization
process for Windows CE platform.

sample.mpr en/sample.ebp
de/sample.epb
fr/sample.ebp

en/sample.vb
de/sample.vb
fr/sample.vb

1 2 3
Source files Project file Localized source files Localized application files

sample.ebp
*.ebf
*.bas

Figure 41 The files of the source code localization process of Embedded Visual Basic application

Embedded Visual Basic (Windows CE) uses the same localization process as desktop
Visual Basic. However it uses a different project file (.ebp) and the form file (.ebf)
extensions.

Binary localization
If you have isolated all strings, including the user interface strings in string resources, you
can apply the binary localization type in your project. See binary localization described in
the C++ tutorial for more information.

50 Multilizer 5.1 - Developer’s Guide

Component Localization
Use component localization only if your application must have the dynamic language
switch feature.

sample.vbp
(sample.exe)
(*.frm, *.bas)

sample.mpr sample.mld1 2
Project files Project file Runtime dictionary file

Figure 42 The files of the component localization process of a Visual Basic application

The programmer starts Multilizer‘s Project Wizard and selects a Visual Basic project file
(.vbp) to be globalized. Multilizer extracts the string data from the form (.frm) and the
source code (.bas) files, and the resource strings from the binary file (.exe) to create the
project file (1). The programmer adds the dictionary components to the main form and the
translator components to all forms. The translators translate the projects. The
programmer uses Multilizer or Builder to create the run-time dictionary for the application
(2).

Multilizer OCX was included to previous Multilizer verison. It is not included to current
verison. If you have a previous Multilizer version installed you can use the component
localized. If not you have to use either the source code or binary localization.

English Application
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. This is what we are going to do.
The <platform>\Samples\Tutorial contains Dcalc with an English UI. <platform> is VB16,
VB32 or EVB depending on your target operating system. Open it, compile it, and finally
run it.

The Windows application should look like this:

Figure 43 Visual Basic (Windows) application with an English UI

The Windows CE application should look like this:

 Multilizer 5.1 - Developer’s Guide 51

Figure 44 Visual Basic (Windows CE) application with an English UI

The user interface language is English. In the following chapters we will localize Dcalc
step-by-step.

Internationalization
Internationalization is the process of generalizing a product so that it can handle multiple
languages and cultural conventions without the need for re-design; re-engineering source
code so that products and applications are compatible with country-specific operating
systems and software.

Internationalization (I18N) takes place at the level of program design and document
development. I18N is defined as the set of processes, tools, coding techniques and
procedures used to write a software program that supports all of the language
requirements and country conventions of all of the countries where the software will be
used. For instance, writing an I18N ready application that supports the writing systems for
Japan and English, including the special sorting for the different alphabets. The user
interface of an I18N ready application is still in English, but the base code supports the
language requirements for both languages.

When writing code that can be easily localized later on, i.e. doing internationalization, the
following things should be taken into consideration:

• String lengths in general. English language for example has shorter strings than
Finnish. So both the user interface and the source code containing the string
should be able to contain relatively long strings in the actual code.

• The user interface can be designed by using different user interface elements so
that string lengths don’t pay that much importance in the localization. The
developer can use for example radio buttons with descriptions instead of drop-
downs and thus might not have to make the drop-down very wide just to make
sure that most languages can fit in to the drop-down space.

• VB internationalization for Windows’ desktop versions or for Windows CE follows
exactly the same rules since the code is the same and the user interface issues
are the same.

Creating a New Project
Now it is time to launch the Multilizer.

52 Multilizer 5.1 - Developer’s Guide

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

Figure 45 The Select Target sheet is used to specify the project to be localized

This sheet specifies the directory where your application is located. Choose the
<multilizer>\VB32\Samples\Tutorial (Windows), <multilizer>\VB16\Samples\Tutorial
(Windows 3.x) or <multilizer>\EVB\Samples\Tutorial (Windows CE) subfolder in your
Multilizer directory. Project Wizard detects the application and project types. If they are
wrong, check the right types matching on your project.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

 Multilizer 5.1 - Developer’s Guide 53

Figure 46 English and Finnish added to the project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

54 Multilizer 5.1 - Developer’s Guide

Figure 47 The project grid

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project save it by choosing File | Save.

Create the localized source files by choosing Project | Build Localized Items. This
creates the localized source files in language specific sub directories (‘en’ and ‘fi’).

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run. This will load the localized project into Visual Basic.

After compiler appears, run the project. The localized Dcalc appears.

Figure 48 Localized Dcalc application (Windows)

 Multilizer 5.1 - Developer’s Guide 55

Figure 49 Localized Dcalc application (Windows CE)

For more information about translating a project with Multilizer, see the Translator’s
Manual.

56 Multilizer 5.1 - Developer’s Guide

9
Delphi and C++Builder

In this chapter we are going to create a localized Delphi/C++Builder application. The
application will be a simple driving-time calculator, Dcalc, which a user can use to
calculate the average driving time for a given distance. Don’t let the fact that the Dcalc
application is very simple fool you. It is a real application and uses most features of
Multilizer.

This tutorial is written for Delphi 7, and C++Builder 6. Using an older version is almost
identical. Some menu commands may vary.

Multilizer supports two different kinds of localization methods with VCL applications. They
are binary localization and component localization. The following two chapters will
describe both in detail.

Binary Localization
The compiled VCL applications (.exe or .dll) contain resource data. When doing binary
localization, Multilizer scans the original binary files and creates localized binary files as
copies of the original files. The following picture describes the binary localization process.

French resources
German resourcesApplication

Native resources

Application
French resources

Application
German resources

Application
English resources

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file English resources

or

Application
English resources

German resources

French resources

or

Figure 50 Binary localization process of a VCL application

The programmer uses Multilizer to extract strings from the original binary file(s) (1).
Multilizer saves these strings to a project file. The programmer uses Multilizer to send the
project file to a translator(s) who uses Multilizer to translate the project file, and then
sends the translated project file back to the programmer (2). The programmer then uses
Multilizer to create localized binary files (3). As a result there will be one resource file for
each localized language. Multilizer can also produce a single multilingual binary file
containing all the languages of the project, or one binary file for each language.

Multilizer creates subfolders in the original file folder containing the localized files. The
subfolders are named after the language they contain by a two or five-letter identifier. For
example ..\en\<localized file> would contain English localized files, ..\en-US\<localized
file> would contain English (United States) localized files, and ..\fi\<localized file> would
contain Finnish localized files.

The following figure shows the files that Multilizer uses in the binary localization process
of a VCL application.

 Multilizer 5.1 - Developer’s Guide 57

sample.exe sample.mpr en/sample.exe
de/sample.exe
fr/sample.exe

1 2
Application file Project file Localized application files

sample.EN
sample.DE
sample.FR

all/sample.exe

Figure 51 The files of the binary localization process of a VCL application

When deploying the application you can either deploy the original application file with the
selected resource file(s), the localized application file(s), or the multilingual application
file. When using the resource files it possible to change the language of the user interface
on run-time.

The binary localization is the recommended localization method. The binary localization
process is described in more detail in chapters 5 and 6.

Component Localization
The VCL applications source contains form files (.dfm) and source code files (.pas or
.cpp). Multilizer scans these files and creates a project file that contains the strings of the
application. The following picture describes the component VCL localization process.

Application
Native resources 1 2 3

Multilizer
application

Multilizer
application

Multilizer
Application

Programmer ProgrammerTranslators

Project file Application
Multilizer code
Native resources
Runtime dictionary

Translated
Project file

Figure 52 Component localization process of a VCL application

The programmer uses Multilizer to extract strings from source files (1). Multilizer saves
these strings to a project file. The programmer uses Multilizer to send the project file to a
translator(s) who uses Multilizer to translate the project file, and then sends the translated
project file back to the programmer (2). The programmer then uses Multilizer to create a
run-time dictionary file for the application (3). As a result there will be one version of the
actual application that can use all the languages in the project file. Component
localization makes it possible to change the language used in the application at run-time.

The following figure shows the files Multilizer uses in the component localization process
of a VCL application.

sample.dpr
(sample.exe)
(*.dfm, *.pas)

sample.mpr sample.mld1 2
Project files Project file Runtime dictionary file

Figure 53 The files of the component localization process of a VCL application

When deploying the application you can either embed the dictionary inside the application
binary file or leave it to an external file. If you leave it to an external file you can modify
the translations or even add new languages to the application just by replacing the
dictionary file.

The component localization process is described in more detail in chapters 7, 8 and 9.

58 Multilizer 5.1 - Developer’s Guide

English Application
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. The
<mldir>\<compiler>\Samples\Tutorial\dcalc.dpr contains the project file of
the Dcalc sample application. <compiler> is Delphi1, Delphi2, Delphi3, Delphi4, Delphi5,
Delphi6, Delphi7, CBuilder1, CBuilder3, CBuilder4, CBuilder5 or CBuilder6 depending on
your compiler version. Compile and run the application. By default, Dcalc uses English
language.

The application should look like this:

Figure 54 Dcalc application using an English user interface

The user interface language is English (UK) and the application formats currency, date
and time according to English (UK) standards. In the following chapters we will turn Dcalc
into a truly multilingual application, step-by-step.

Binary Internationalization
This chapter describes the binary internationalization process. Internationalization is the
process of generalizing a product so that it can handle multiple languages and cultural
conventions without the need for re-design; re-engineering source code so that products
and applications are compatible with country-specific operating systems and software.
Internationalization (I18N) takes place at the level of program design and document
development.

Open the Tutorial application,
<mldir>\<compiler>\Samples\Tutorial\dcalc.dpr.

Study the source code of the application to familiarize yourself of its behavior. It is not a
complex application, so you should get the idea fairly quickly.

The main form contains some labels that are locale dependent. The label on the right side
of the edit box contains the distance unit. Not every country uses kilometers. That’s why
we must update the label at run-time using a resource string, to make sure that a correct
unit is used. Similarly we assign the screentip text of the edit control and the label
containing the current language at run-time. We could add the initialization code into the
OnCreate event of the main form but let’s prepare to the runtime language switch and
write a separater function for the initialization.

Delphi procedure TMainForm.InitFrom;
resourcestring
 SLanguage = 'English';
 SDefault = 'Default';

 Multilizer 5.1 - Developer’s Guide 59

 SMetricDistanceHint = 'Give the driving distance in kilometres';
 SMetricSpeedHint = 'Give the average driving speed in kilometres per
hour';
 SMetricDistanceLabel = 'in kilometres';
 SMetricSpeedLabel = 'km/h';

 SUsDistanceHint = 'Give the driving distance in miles';
 SUsSpeedHint = 'Give the average driving speed in miles per hour';
 SUsDistanceLabel = 'in miles';
 SUsSpeedLabel = 'mph';
begin
 Application.OnHint := DisplayHint;

 SpeedingFine.Caption := Format('%m', [500.0]);
 CurrentTime.Caption := DateTimeToStr(Now);

 CurrentLocale.Caption := GetLocaleStr(
 LOCALE_USER_DEFAULT,
 LOCALE_SNATIVELANGNAME,
 SDefault);

 CurrentLanguage.Caption := SLanguage;

 if GetMeasurementSystem = ivmsMetric then
 begin
 DistanceEdit.Hint := SMetricDistanceHint;
 DistanceLabel.Caption := SMetricDistanceLabel;

 SpeedEdit.Text := '100';
 SpeedEdit.Hint := SMetricSpeedHint;
 SpeedLabel.Caption := SMetricSpeedLabel;
 end
 else
 begin
 DistanceEdit.Hint := SUsDistanceHint;
 DistanceLabel.Caption := SUsDistanceLabel;

 SpeedEdit.Text := '65';
 SpeedEdit.Hint := SUsSpeedHint;
 SpeedLabel.Caption := SUsSpeedLabel;
 end;
end;

C++Builder void __fastcall TMainForm::InitForm()
{
 Application->OnHint = DisplayHint;

 SpeedingFine->Caption = Format("%m", OPENARRAY(TVarRec, (500.0)));
 CurrentTime->Caption = DateTimeToStr(Now());

 CurrentLocale->Caption = GetLocaleStr(
 LOCALE_USER_DEFAULT,
 LOCALE_SNATIVELANGNAME,
 LoadStr(SDefault));

 CurrentLanguage->Caption = LoadStr(SLanguage);

 if (GetMeasurementSystem() == ivmsMetric)
 {
 DistanceEdit->Hint = LoadStr(SMetricDistanceHint);
 DistanceLabel->Caption = LoadStr(SMetricDistanceLabel);

 SpeedEdit->Text = "100";
 SpeedEdit->Hint = LoadStr(SMetricSpeedHint);
 SpeedLabel->Caption = LoadStr(SMetricSpeedLabel);
 }
 else
 {
 DistanceEdit->Hint = LoadStr(SUsDistanceHint);

60 Multilizer 5.1 - Developer’s Guide

 DistanceLabel->Caption = LoadStr(SUsDistanceLabel);

 SpeedEdit->Text = "65";
 SpeedEdit->Hint = LoadStr(SUsSpeedHint);
 SpeedLabel->Caption = LoadStr(SUsSpeedLabel);
 }
}

The most important part of internationalization (i18N) is resourcing. This means removing
all hard coded strings from the application’s source code. Traditionally hard coded strings
are turned into resources by moving the strings from the actual code into resource
strings.

Delphi makes this extremely easy because of its built-in support for resource strings, with
the resourcestring clause. It defines one or more resource strings. The resourcestring
block contains the resource strings usind in the function. If you are not familiar with
resource strings in Delphi, refer to the VCL documentation. To put it briefly, you use them
almost exactly as you would use string constants.

With C++Builder things are little bit more complicated because you have to use the old-
fashioned resource scripts. The following paragraph contains the resource script header
file dcalcres.h. It specifies the id of each resource string.

C++Builder #define SAboutMsg 0
#define SLanguage 1
#define SDefault 2

#define SMetricDistanceHint 3
#define SMetricSpeedHint 4
#define SMetricDistanceLabel 5
#define SMetricSpeedLabel 6

#define SUsDistanceHint 7
#define SUsSpeedHint 8
#define SUsDistanceLabel 9
#define SUsSpeedLabel 10

#define SInvalidDistance 11
#define SInvalidSpeed 12
#define SCalculateMsg0 13
#define SCalculateMsg1 14
#define SCalculateMsgN 15

The resource script file is shown below.
C++Builder #include "dcalcres.h"

STRINGTABLE
BEGIN
 SAboutMsg "Dcalc is a multilingual application that calculates the
average driving time";
 SLanguage "English";
 SDefault "Default";

 SMetricDistanceHint "Give the driving distance in kilometres";
 SMetricSpeedHint "Give the average driving speed in kilometres per
hour";
 SMetricDistanceLabel "in kilometres";
 SMetricSpeedLabel "km/h";

 SUsDistanceHint "Give the driving distance in miles";
 SUsSpeedHint "Give the average driving speed in miles per hour";
 SUsDistanceLabel "in miles";
 SUsSpeedLabel "mph";

 SInvalidDistance "\"%s\" is not a valid distance!";
 SInvalidSpeed "\"%s\" is not a valid speed!";
 SCalculateMsg0 "The average driving time is %d minutes.";
 SCalculateMsg1 "The average driving time is one hour and %d minutes.";

 Multilizer 5.1 - Developer’s Guide 61

 SCalculateMsgN "The average driving time is %0:d hours and %1:d
minutes.";
END

The second code section in the begin end section of the IniForm function formats the
speed and time in locale independent ways. The Format and DateTimeToStr functions
convert the value to a string value using the formatting rules of the current locale.

The next code section sets the caption of the current locale label to match the current
locale. The name is given in the native language of the locale.

The next code section sets the caption of the current language label to match the current
language. The SLanguage resource string contains the name of the language in its native
language (e.g. English, Deutch, suomi, svenska, etc).

The last code section sets the initial values, labels and screentips for distance and speed.
Metric system uses kilometers and km/h. US system uses miles and mph. Unit IvI18N
contains the GetMeasurementSystem function that returns the measurement system of
the current locale.

To do the first initialization we call the initialization function from the OnCreate event.
Delphi procedure TMainForm.FormCreate(Sender: TObject);

begin
 InitForm;
end;

C++Builder void __fastcall TMainForm::FormCreate(TObject *Sender)
{
 InitForm();
}

The CalculateButtonClick event needs a little bit more rewriting. Let’s study the code that
generates the driving distance message:

Delphi 'The avarage driving time is ' + IntToStr(hours) + ' hours and ' +
IntToStr(minutes) + ' minutes.',

C++Builder "The avarage driving time is " + IntToStr(hours) + " hours and " +
IntToStr(minutes) + " minutes.",

This seems to be just ok, but it will actually make the localization hard or even impossible.
The reason is that the above logic assumes that the message always starts with the “The
average driving time is “ string, and then contains the hours, hour label, minutes and the
minute label. However, not all languages use the same order of words in a sentence. For
example the order might be: minute label, minutes, hour label, hours and the text string.
Reordering of the parts of the message is impossible if we use the code shown above.

Fortunately we can use VCL’s Format function. It uses message pattern that contains
placeholders for the dynamic parameters. At run-time the function combines the pattern
with the parameters to compose the message. Because the pattern is a single string it
can be added to the resource strings, and it can then be translated as a single item. The
above code after the internationalization is:

Delphi Format(SCalculateMsg, [hours, minutes]),

C++Builder Format(LoadStr(SCalculateMsg), OPENARRAY(TVarRec, (hours, minutes))),

SCalculateMsg is the pattern and the hours and minutes are parameters.

The next step is to internationalize the calculate event. The following line of code contains
the Calculate event.

Delphi procedure TMainForm.CalculateButtonClick(Sender: TObject);
resourcestring
 SInvalidDistance = '"%s" is not a valid distance!';
 SInvalidSpeed = '"%s" is not a valid speed!';
 SCalculateMsg0 = 'The average driving time is %d minutes.';

62 Multilizer 5.1 - Developer’s Guide

 SCalculateMsg1 = 'The average driving time is one hour and %d
minutes.';
 SCalculateMsgN = 'The average driving time is %0:d hours and %1:d
minutes.';
var
 str: String;
 distance, speed, hours, minutes: Integer;
begin
 distance := StrToIntDef(DistanceEdit.Text, -1);
 if distance < 0 then
 begin
 MessageDlg(
 Format(SInvalidDistance, [DistanceEdit.Text]),
 mtError,
 [mbOK],
 0);
 DistanceEdit.SetFocus;
 Exit;
 end;

 speed := StrToIntDef(SpeedEdit.Text, -1);
 if speed <= 0 then
 begin
 MessageDlg(
 Format(SInvalidSpeed, [SpeedEdit.Text]),
 mtError,
 [mbOK],
 0);
 SpeedEdit.SetFocus;
 Exit;
 end;

 if GetMeasurementSystem = ivmsUS then
 begin
 distance := Trunc(MILE_IN_METERS*distance/1000);
 speed := Trunc(MILE_IN_METERS*speed/1000);
 end;

 hours := distance div speed;
 minutes := Round(60*(distance mod speed)/speed);

 case hours of
 0: str := Format(SCalculateMsg0, [minutes]);
 1: str := Format(SCalculateMsg1, [minutes]);
 else
 str := Format(SCalculateMsgN, [hours, minutes]);
 end;

 MessageDlg(str, mtInformation, [mbOK], 0);
end;

C++Builder void __fastcall TMainForm::CalculateButtonClick(TObject *Sender)
{
 int distance = StrToInt(DistanceEdit->Text);
 if (distance < 0)
 {
 MessageDlg(
 Format(
 LoadStr(SInvalidDistance),
 OPENARRAY(TVarRec, (DistanceEdit->Text))),
 mtError,
 TMsgDlgButtons() << mbOK,
 0);
 DistanceEdit->SetFocus();
 return;
 }

 int speed = StrToInt(SpeedEdit->Text);
 if (speed <= 0)

 Multilizer 5.1 - Developer’s Guide 63

 {
 MessageDlg(
 Format(
 LoadStr(SInvalidSpeed),
 OPENARRAY(TVarRec, (SpeedEdit->Text))),
 mtError,
 TMsgDlgButtons() << mbOK,
 0);
 SpeedEdit->SetFocus();
 return;
 }

 if (GetMeasurementSystem() == ivmsUS)
 {
 distance = MILE_IN_METERS*distance/1000;
 speed = MILE_IN_METERS*speed/1000;
 }

 int hours = distance/speed;
 int minutes = float(60)*(distance%speed)/speed;

 AnsiString str;

 switch (hours)
 {
 case 0:
 str = Format(LoadStr(SCalculateMsg0), OPENARRAY(TVarRec,
(minutes)));
 break;

 case 1:
 str = Format(LoadStr(SCalculateMsg1), OPENARRAY(TVarRec,
(minutes)));
 break;

 default:
 str = Format(LoadStr(SCalculateMsgN), OPENARRAY(TVarRec, (hours,
minutes)));
 }

 MessageDlg(str, mtInformation, TMsgDlgButtons() << mbOK, 0);
}

The hard coded error message has been replaced with the Format message.

If the selected locale uses miles instead of kilometers we have to treat the value in the
edit box as miles. Then we also have to convert distance from miles to kilometers before
calculating the driving time. It is always a good idea to internally use the metric system
and convert the input and output to the US system when application is run on a US
locale, because that makes the calculations easier.

After we have calculated the average driving speed we have to show it to the user. As
described previously we are going to use the Format function and message patterns.
However we want to make the message grammatically correct. That’s why we need three
message patters. The first one is for the case when the time is less that an hour, another
for the case when the time is between one and two hours, and last for the case when the
time is two hours or more. This is because in most languages the single and plural forms
are handled in different ways. For example “one hour” vs. “two hours”.

The following figure contains the message when the time is less that one hour. Note that
there is no hour string present.

64 Multilizer 5.1 - Developer’s Guide

The following figure contains the message when the time is more than one hour but less
than two hours. Note that the value for hour is not given as a number but written in letters.

The following figure contains the message when the time is more than two hours. Both
hours and minutes are shown as numbers and in plural form.

Even this solution is not perfect because:

• There might be a language that has a specific word for two hours. The above
logic assumes that only 0, 1 and 2 or more are handled each in different ways.

• We should use the same logic for minutes as well but this would require 3 by 3
equals 9 message patterns.

The final task left is to resource the message used in the about box:
Delphi procedure TMainForm.AboutMenuClick(Sender: TObject);

resourcestring
 SAboutMsg = 'Dcalc is a multilingual application that calculates the
average driving time';
begin
 MessageDlg(SAboutMsg, mtCustom, [mbOK], 0);
end;

C++Builder void __fastcall TMainForm::AboutMenuClick(TObject *Sender)
{
 MessageDlg(
 LoadStr(SAboutMsg),
 mtCustom,
 TMsgDlgButtons() << mbOK,
 0);
}

Because we set many property values dynamically at run-time the original design time
values in the form files become obsolete. They cause no harm but it makes translator’s
job easier if we remove them. We could set those values to empty but this would make it
harder to edit the form files because the labels would no longer be visible. A good
solution is to set all dynamic visible property values to “dummy“.

 Multilizer 5.1 - Developer’s Guide 65

Figure 55 The internationalized Dcalc form on Delphi IDE

Now the Dcalc application has been internationalized. Compile and run it to see that it
works before moving on.

Figure 56 The internationalized Dcalc application running with Finnish locale

This simple internationalization demonstrates three of the most important issues to take
into consideration in internationalization: resourcing, dynamic messages and unit
conversions. There are quite many other things that you need to know about
internationalization as well. Refer to Delphi’s online help and/or an I18N book to get more
information about internationalization.

The final task is to implement runtime language switch. This can be done if the resource
DLLs are used. Add Language... menu to the File menu and write the following code.

Delphi procedure TMainForm.LanguageMenuClick(Sender: TObject);
begin
 if SelectResourceLocale then
 begin
 InitForm;
 SetCurrentDefaultLocaleReg;
 end;
end;

C++Builder void __fastcall TMainForm::LanguageMenuClick(TObject *Sender)
{

66 Multilizer 5.1 - Developer’s Guide

 if (SelectResourceLocale())
 {
 InitForm();
 SetCurrentDefaultLocaleReg();
 }
}

The SelectResourceLocale function shows a dialog box that shows the available resource
language and loads the selected resource DLL. This will remove all runtime modifications
of the forms. That’s why we have to call the InitForm function again. Finally we save the
selected language to the system registry.

When staring the application VCL is going to select the resource DLL matching to the
current locale settings of the user. We want better control over the initial language. The
first choise would be a command line parameter (e.g. dcalc.exe en_US). If that is not
present then we would like use the previous language stored in the system registry under
the HKEY_CURRENT_USER\Software\Borland\Locales key. This registry key is the build
in feature of VCL. Only if that does not exist we would like to use the default language.
Add the following code in the initialization part of the main form.

Delphi var
 locale: Integer;
initialization
 if GetCommandLineLocale(locale) then
 SetNewResourceDll(locale);
end;

C++Builder WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
 try
 {
 int locale;
 if (GetCommandLineLocale(locale))
 SetNewResourceDll(locale);

 Application->Initialize();
 Application->CreateForm(__classid(TMainForm), &MainForm);
 Application->Run();
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 return 0;
}

We will perform one more task to make the localization easier. When using resourcestring
clause, Delphi puts the strings to the string resources automatically. However it does not
let you to choose what string ids will be used. In addition Delphi will most likely change
those ids on next time you compile your application. What remains constant are the
resource string names (e.g. SInvalidDistance). Unfortunately the compiled binary file
(.exe or .dll) does not contain the resource string name but only the string ids. Fortunately
it is possible to make Delphi to create a resource string file that contains all the resource
strings name and ids used by the application. To create such a file open a Delphi project,
choose Project | Options, select the Linker tab and check Detailed in the Map file radio
group. Rebuild the application by choosing Project | Build DCalc. Delphi generates the
resource string file called dcalc.drc.

Creating a Binary Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button.

 Multilizer 5.1 - Developer’s Guide 67

Figure 57 The File Target sheet is used to specify the application file to be localized.

This sheet specifies the location of your application. Choose the
<mldir>\<compiler>\Samples\Tutorial subfolder. Project Wizard detects the
platform and project types. The Platform type should be Windows and the Target type
should be Delphi binary file. If they are wrong, check the right types.

Press the Next button. The VCL Binary sheet appears:

Figure 58 The VCL Binary sheet is used to set VCL specific options.

This sheet specifies the native languages, output types, translated items and the string
string file (Delphi). Accept the default values by pressing the Next button. The Information
sheet appears. This sheet specifies the project name and other project related

68 Multilizer 5.1 - Developer’s Guide

information. Accept the default values by pressing the Next button. The Languages sheet
appears. This sheet lets you select the initial languages you would like to localize in the
project. You only need to select one or a few initial languages, as you can always add
more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 59 English and Finnish added to a project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

 Multilizer 5.1 - Developer’s Guide 69

Figure 60 The project grid

On the left side there is a tree view that contains the targets and the items they contains.
Our project contains one target, dcalc.exe, and it contains several string tables, two forms
and one menu. To show only the string beloning to a specific item select the item in the
tree. On the right side there is the editing grid. It contains the native column and the
English column. To show another language select the language from the combo box
above the grid.

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.

Next step is to create localized application files. You do this by choosing Project | Build
Localized Files from the menu. This creates the localized resource files (.EN and .FI) in
the same folders where the application file is located.

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run. This is the easiest way to test the localized version.

By default Multilizer creates the localized resource files. You can set it to create also
localized application files (e.g. en\dcalc.exe) and a multilingual application file (e.g.
all\dcalc.exe) that contains resources in all languages of the project. Select dcalc.exe
from the left-hand side tree view and right-click to open the popup menu. Choose Edit
target to open the Delphi Binary File Target dialog.

70 Multilizer 5.1 - Developer’s Guide

Figure 61 The Delphi Binary File Target dialog

Select the Localization sheet and check the Localized files and the Multilingual file check
boxes. Next time you build localized files, Multilizer also creates the localized application
files and the multilingual application file.

For more information about translating a project with Multilizer, see the Translator’s
Manual.

Integrated Translation Environment
If you have previously used the Integrated Translation Environment (ITE) to localize you
application switching to Multilizer is very easy. All you have to do is to create a Multilizer
project. When creating the project the following message box will appear.

Figure 62 A message box that shows that there are existing ITE translations.

Press Yes to import the initial languages and translations from ITE generated resource
DLLs. From now on you do not have to use ITE any more. You can delete ITE directories,
projects files, and project groups.

Controlling What Properties Are Localized
Multilizer localizes the string properties. An application has string in two different places.
The first place are the string resources. These contain the resource strings used by the
application. Another place are the forms. These contain string data.

The first way to control the localization is to select what string types are localized. This is
do using the target dialog show in the figure 61. By default the Forms and Resource
strings check boxes are checked. To disable localization of either type uncheck the check
box.

 Multilizer 5.1 - Developer’s Guide 71

You can control the localization of form strings in more detail. Choose Tools | Options |
VCL to open the VCL Options dialog. This dialog lets you specify the properties that are
not localized (Ignored tab), specify the components that contain binary data (Components
tab), and specify the fonts (Fonts tab). For more information about VCL options, see the
Online Help by pressing the Help button.

Component Internationalization
This chapter and the following two chapters describe the component localization process.
The first step to take is to internationalize the Dcalc application. Let’s start by dropping
two components on the main form. Select the Multilizer sheet from the Component
Palette, and drop TIvTranslator and TivTestDictionary components on the form.

The result should look like this:

Figure 63 Translator and dictionary components have been added to the form

What are these two components for? TIvTestDictionary is one of the dictionary
components of Multilizer. A dictionary component provides string or phrase translation for
the application. Normally each application contains only one dictionary component
connected to one project file, which contains all the translation data of the application.
Multilizer contains several different types of dictionary components: one for getting
translation data from a text file, another for data from a database, etc.

TIvTestDictionary component is a special case. It does not require any actual dictionary
data, but it makes the translation on the fly by changing the original string to a test string.
You cannot use the test dictionary in your final application because the translation is not a
real language, but it is extremely useful in the early development phase.

TIvTranslator component is the component that actually does all the work. It scans the
form before the form becomes visible, and translates the user interface strings from the
original value to the corresponding string of the currently selected language.

Now you can compile and run Dcalc. It should look like this:

72 Multilizer 5.1 - Developer’s Guide

Figure 64 “Translated” applications. The test dictionary translated every string to an upper case
string

As you can see, every user interface string has been changed using the pseudo
translation algorithm. The translator changed every string type property after the form had
been loaded from the resource. By default the test dictionary translates every string by
using the pseudo translation alogorithm, thus making it easy to see if some part of
internationalization is not properly done – for example, strings hard-coded into the source
code would not be translated.

Generally you need to add one Dictionary component on the application main form and
one Translator component on every form in the application that requires translating.
Check the on-line help topic “Translator Usage” for more detailed information on this.

For additional information on using the test dictionary, see the online help topic
"TIvTestDictionary".

This was a quick demonstration of the power of Multilizer. In the next chapter we will
create a real dictionary that contains real languages. However, first we have to
internationalize the code properly.

If the program contains items, which are country (locale) -specific or hard coded in the
source code, they must be removed. This phase is called internationalization: it makes
your software language/country independent. The next phase would then be to localize
the program, i.e. add for each target country the locale-specific issues.

The Dcalc application calculates the average driving time at a given driving speed. Most
countries in the world use the metric system, where the distance is expressed in
kilometers. However, for example in the US miles are used instead, and Dcalc needs to
be correctly internationalized to be compatible to use correct units.

When a user clicks on the Calculate button, Dcalc calls the following event:
Delphi procedure TMainForm.CalculateButtonClick(Sender: TObject);

var
 distance, speed, hours, minutes: Integer;
begin
 distance := StrToIntDef(DistanceEdit.Text, -1);
 if distance < 0 then
 begin
 MessageDlg(
 DistanceEdit.Text + ' is not a valid distance!',
 mtError,
 [mbOK],
 0);
 DistanceEdit.SetFocus;
 Exit;
 end;

 Multilizer 5.1 - Developer’s Guide 73

 speed := StrToIntDef(SpeedEdit.Text, -1);
 if speed <= 0 then
 begin
 MessageDlg(
 SpeedEdit.Text + ' is not a valid speed!',
 mtError,
 [mbOK],
 0);
 SpeedEdit.SetFocus;
 Exit;
 end;

 hours := distance div speed;
 minutes := Round(60*(distance mod speed)/speed);

 MessageDlg(
 'The avarage driving time is ' + IntToStr(hours) + ' hours and ' +
 IntToStr(minutes) + ' minutes.',
 mtInformation,
 [mbOK],
 0);
end;

C++Builder void __fastcall TMainForm::CalculateButtonClick(TObject *Sender)
{
 try
 {
 if (DistanceEdit->Text.Length() == 0)
 {
 DistanceEdit->Text = " ";
 throw Exception("");
 }
 int distance = StrToInt(DistanceEdit->Text);
 if (distance < 0)
 throw Exception("");

 int hours = distance/100;
 int minutes = 0.6*(distance%100);

 MessageDlg(
 Format(
 "The average driving time is %d hours and %d minutes.",
 OPENARRAY(TVarRec, (hours, minutes))),
 mtInformation,
 TMsgDlgButtons() << mbOK,
 0);
 }
 catch (...)
 {
 MessageDlg(
 Format(
 "\"%s\" is not a valid distance!",
 OPENARRAY(TVarRec, (DistanceEdit->Text))),
 mtError,
 TMsgDlgButtons() << mbOK,
 0);
 DistanceEdit->SetFocus();
 }
}

When the English (United States) locale is active the user gives the distance in miles. To
convert miles to kilometers add the following just before line
hours := distance div 100;

Delphi if IvDictionary1.LocaleData.MeasurementSystem = ivmsUS then

begin
 distance := Trunc(MILE_IN_METERS*distance/1000);

74 Multilizer 5.1 - Developer’s Guide

 speed := Trunc(MILE_IN_METERS*speed/1000);
end;

C++Builder if (IvBinaryDictionary1->LocaleData->MeasurementSystem == ivmsUS)
{
 distance = MILE_IN_METERS*distance/1000;
 speed = MILE_IN_METERS*speed/1000;
}

This is enough for the system to convert miles to kilometers but not for the user. The user
will most definitely be a bit confused if the user interface still prompts for kilometers. To
make the user interface react to the locale change, add the OnLocaleChange event to the
dictionary and write the following code:

Delphi procedure TMainForm.IvTranslator1LanguageChange(Sender: TObject);
begin
 if IvDictionary1.LocaleData.MeasurementSystem = ivmsMetric then
 begin
 DistanceLabel.Caption := Translate('in kilometres');
 DistanceEdit.Hint := Translate('Give the driving distance in
kilometres');

 SpeedEdit.Text := '100';
 SpeedEdit.Hint := Translate('Give the average driving speed in
kilometres per hour');
 SpeedLabel.Caption := Translate('km/h');
 end
 else
 begin
 DistanceLabel.Caption := Translate('in miles');
 DistanceEdit.Hint := Translate('Give the driving distance in miles');

 SpeedEdit.Text := '65';
 SpeedEdit.Hint := Translate('Give the average driving speed in miles
per hour');
 SpeedLabel.Caption := Translate('mph');
 end;

 SpeedingFine.Caption := Format('%m', [500.0]);
 CurrentTime.Caption := DateTimeToStr(Now);
 CurrentLocale.Caption :=
IvDictionary1.LocaleData.GetDisplayName(ivdnTranslated, IvDictionary1);
 CurrentLanguage.Caption :=
Translate(IvDictionary1.LanguageData.EnglishName);

 SpeedingFine.Font.Charset := IvLangIdToCharset(IvDictionary1.Locale);
 CurrentTime.Font.Charset := IvLangIdToCharset(IvDictionary1.Locale);

 IvTranslator1.UpdateControls;
end;

C++Builder void __fastcall TMainForm::IvBinaryDictionary1LocaleChange (TObject
*Sender)
{
 if (IvDictionary1->LocaleData->MeasurementSystem == ivmsMetric)
 {
 DistanceLabel->Caption = Translate("in kilometres");
 DistanceEdit->Hint = Translate("Give the driving distance in
kilometres");

 SpeedEdit->Text = "100";
 SpeedEdit->Hint = Translate("Give the average driving speed in
kilometres per hour");
 SpeedLabel->Caption = Translate("km/h");
 }
 else
 {
 DistanceLabel->Caption = Translate("in miles");
 DistanceEdit->Hint = Translate("Give the driving distance in miles");

 Multilizer 5.1 - Developer’s Guide 75

 SpeedEdit->Text = "65";
 SpeedEdit->Hint = Translate("Give the average driving speed in miles
per hour");
 SpeedLabel->Caption = Translate("mph");
 }

 SpeedingFine->Caption = Format("%m", OPENARRAY(TVarRec, (500.0)));
 CurrentTime->Caption = DateTimeToStr(Now());
 CurrentLocale->Caption = IvDictionary1->LocaleData-
>GetDisplayName(ivdnTranslated, IvDictionary1);
 CurrentLanguage->Caption = Translate(IvDictionary1->LanguageData-
>EnglishName);

 SpeedingFine->Font->Charset = IvLangIdToCharset(IvDictionary1->Locale);
 CurrentTime->Font->Charset = IvLangIdToCharset(IvDictionary1->Locale);

 IvTranslator1->UpdateControls();
}

First the code checks the measurement system. Comparing the global variable
MeasurementSystem does this. The code updates the label and screentip. Let’s study the
following code in more detail:

Delphi DistanceLabel.Caption := Translate('in kilometres');

C++Builder DistanceLabel->Caption = Translate("in kilometres");

In a monolingual application you would have used the following code:
Delphi DistanceLabel.Caption := 'in kilometres';

C++Builder DistanceLabel->Caption = "in kilometres";

This isn’t a proper way in a multilingual application because the same EXE file must work
correctly on every language and locale. That’s why the native string is translated before
assigned to the Caption property.

The lower part of the event updates the speeding fine, current time, active language
name and active locale name.

The monolingual Dcalc contains the following event:
Delphi procedure TMainForm.FormCreate(Sender: TObject);

begin
 Application.OnHint := DisplayHint;

 SpeedingFine.Caption := '£500';
 CurrentTime.Caption := FormatDateTime('dd''/''mm''/''yyyy hh:nn:ss',
Now);
end;

C++Builder void __fastcall TMainForm::FormCreate(TObject *Sender)
{
 Application->OnHint = DisplayHint;

 SpeedingFine->Caption = "£500";
 CurrentTime->Caption = FormatDateTime("dd'/'mm'/'yyyy hh:nn:ss",
Now());
}

The event is not required any more because the
IvBinaryDictionary1LocaleChange event updates the labels. You can remove it.

We need to make a few modifications to the CalculateButtonClick event to make
the message boxes multilingual. Consider the following code:

76 Multilizer 5.1 - Developer’s Guide

Delphi MessageDlg(
 Format(
 'The avarage driving time is %0:d hours and %1:d minutes.',
 [hours, minutes]),
 mtInformation,
 [mbOK],
 0);

C++Builder MessageDlg(
 Format(
 "The average driving time is %d hours and %d minutes.",
 OPENARRAY(TVarRec, (hours, minutes))),
 mtInformation,
 TMsgDlgButtons() << mbOK,
 0);

Multilizer translates the message dialogs but not the message text. You must use the
Translate method to translate it.

Delphi MessageDlg(
 Format(
 Translate('The average driving time is %0:d hours and %1:d
minutes.'),
 [hours, minutes]),
 mtInformation,
 [mbOK],
 0);

C++Builder MessageDlg(
 Format(
 Translate("The average driving time is %d hours and %d minutes."),
 OPENARRAY(TVarRec, (hours, minutes))),
 mtInformation,
 TMsgDlgButtons() << mbOK,
 0);

Remember that you have to translate the exception message as well.
Delphi MessageDlg(

 Format(
 Translate('"%s" is not a valid distance!'),
 [DistanceEdit.Text]),
 mtError,
 [mbOK],
 0);

C++Builder MessageDlg(
 Format(
 Translate("\"%s\" is not a valid distance!"),
 OPENARRAY(TVarRec, (DistanceEdit->Text))),
 mtError,
 TMsgDlgButtons() << mbOK,
 0);

Translate the message box in the AboutMenuClick event.
Delphi MessageDlg(

 Translate('Dcalc is a multilingual application that calculates the
average driving time'),
 mtCustom,
 [mbOK],
 0);

 Multilizer 5.1 - Developer’s Guide 77

C++Builder MessageDlg(
 Translate"Dcalc is a multilingual application that calculates the
average driving time"),
 mtCustom,
 TMsgDlgButtons() << mbOK,
 0);

Assign the IvBinaryDictionary1LocaleChange event to the OnLanguageChange event as
well. This is because the above messages need to be updated every time either the
active language or active locale changes, as these can be changed independently.

Finally, you need to add the IvMlUtils unit to the uses clause of the implementation part:
Delphi uses

 IvMlUtil;

C++Builder #pragma package(smart_init)
#pragma link "IvMlUtil"

Creating a Component Project
Creating a project for an application using components is fairly similar to the binary
project. The only differences are that you have to select a different target type and specify
the dictionary.

Figure 65 The Select Target sheet is used to specify the project file to be localized.

A few sheets later the wizard shows the Dictionary sheet that specifies the type of run-
time dictionary to be used by the dictionary component:

78 Multilizer 5.1 - Developer’s Guide

Figure 66 Dictionary sheet is used to specify the dictionary type

This sheet specifies the type of dictionary. The online help describes each dictionary type.
Accept the default dictionary (Binary file) by pressing the Next button. The rest of the
wizard is similar to binary localization.

We recommend that you use the Binary dictionary, unless you specifically need to use
another type.

Now you can translate the project. When you are done translating, save the project and
create the run-time dictionary by selecting Project | Build Localized Items from the
menu.

Using Run-time Dictionary
Open the Tutorial application in Delphi or C++ Builder. Add the TIvBinaryDictionary
component to the main form. If you already have the TivTestDictionary component on the
form, remove it now. Choose the BinaryDictionary component and move to the Object
Inspector. Set the FileName property to dcalc.mld which you created in previous
lesson.

If you pressed the … button and browsed the file name, the Object Inspector would add
the full file name and path (e.g. C:\Program
Files\Multilizer\Delphi7\Samples\tutorial\dcalc.mld). You should avoid
using absolute paths, as they may cause problems when deploying your application, so
remove the path part from the file name now.

Later you will learn how to include the dictionary file in the EXE file so that there is no
need to deploy it as a separate file. The Object Inspector should look like this:

 Multilizer 5.1 - Developer’s Guide 79

Figure 67 Object Inspector showing the properties of a binary dictionary component

Let’s study some of the properties. The Language property specifies the active language.
It is now –1. This makes Multilizer check the current locale of the user’s operating system,
and find the language that matches the locale. If the correct language is not found, the
first (non-native) language is used. Therefore it is recommended that you would always
have English language as the first language in your dictionary – it is supported by every
Windows version, so your application can safely use it as the default language.

The PrimaryLanguage and the SubLanguage properties specify the active locale. The
active language determines the language of the user interface. The active locale,
however, determines the locale used by the application. The locale is a country and
language specific object that controls how the date, time, currency, number, etc. are
formatted.

The PrimaryLanguage property is 0 and the SubLanguage property is 1. These make
Multilizer use the default locale of the user. See more in the online documentation under
the topic TIvDictionary.

In our case the project file contains English and Finnish. If the locale setting of the user is
Finnish (Finland) the user interface of Dcalc will be in Finnish and the locale will be
Finnish (Finland).

One important property is Storage. It specifies how the dictionary is used at run-time. In
this example, the dictionary will be in an external file also at run-time. The dictionary could
also be embedded in the EXE file, or stored in resource data.

Now you can run the application. If you have translated it completely to Finnish, it should
look like this:

80 Multilizer 5.1 - Developer’s Guide

Figure 68 Dcalc in Finnish

Dcalc now has the ability to adapt to the current language and locale settings of the user.
What about changing the language and/or locale at run-time? Instructions on how to do
that below. Close the Dcalc application and return to Delphi/C++ Builder.

Double click the MainMenu1 component. The menu editor appears. Add a Language…
menu item to the Language menu.

The result should look like this:

Figure 69 Add the Language menu item to the main menu

Write the following event handler to the Language… menu item:
Delphi procedure TMainForm.LanguageMenuClick(Sender: TObject);

var
 language: Integer;
begin
 if SelectLanguage(language) then
 IvBinaryDictionary1.Language := language;
end;

C++Builder void __fastcall TMainForm::LanguageMenuClick(TObject *Sender)
{
 int language;

 if (SelectLanguage(language))
 IvBinaryDictionary1->Language = language;
}

The SelectLanguage shows the Language Select dialog box of Multilizer. It contains a list
of available languages that the user can select. After calling the SelectLanguage function

 Multilizer 5.1 - Developer’s Guide 81

the event sets a new active language by setting the Language property of the dictionary
component.

Add the IvLanguD unit to the uses clause of the implementation part. This is because the
SelectLanguage function locates on that unit.

Run the application and choose Language | Language… (Or Kieli | Kieli… if you have
Finnish active). The following dialog box appears:

Figure 70 Select Language dialog box lets the user select the active language at run-time

The SelectLanguage dialog box shows all available languages in a tree view. There may
be more languages in the project file than are shown in the available languages list. It
may be that your operating system cannot cope with all character scripts of the languages
in the dictionary, and by default such languages are not shown in the list.

For example you need to have a bi-directional OS to properly display Arabic or Hebrew.
Also most Western OS versions lack support for Cyrillic or Far Eastern languages. You
can make the dictionary component and SelectLanguage function display every language
by setting the CheckLevel property of the dictionary component to ivclNone.

Now select a new language from DCalc and click the OK button. The active language
(user interface) of Dcalc changes to that language. By default the active locale also
changes to the default locale of the language. You can set the active language and locale
independently by removing the ivdoBindLocale from the Options property of the dictionary
component.

The SelectLanguage dialog box itself contains strings that need to be translated as well.
Also the IvMessageBox uses several strings (e.g. “OK”, “Cancel”). The master string table
of the Multilizer contains all these constant strings. All you need to do is to add them to
your project file.

If the Multilizer is not running, start it now. Open the project file, and choose Project |
Include | System Strings. The System Strings dialog box appears. Check Language
Dialog, Message Box, and System Menu check boxes.

82 Multilizer 5.1 - Developer’s Guide

Figure 71 The System Strings dialog box lets the developer add strings used by the system or by
the standard components

Press the OK button. Multilizer adds the strings used by the Select Language dialog,
Message box and the system menu. Now translate these strings. For more information
about translating the project, please refer to chapter 7 in this manual.

Now the Dcalc application is fully multilingual. The user interface, locale settings and
input measures match the local settings. The user can even change the language at run-
time.

 Multilizer 5.1 - Developer’s Guide 83

10
Java

In this tutorial we are going to create a multilingual application with Multilizer. First we use
java resource bundles and then we show how to do the same thing with Multilizer java
beans. The application will be a simple driving-time calculator, Dcalc that a user can use
to calculate the average driving time for a given distance.

This tutorial is written for JBuilder 7. With each instruction there is also an explanation
how to accomplish it using the plain JDK. If you use some other Java IDE (e.g. Sun ONE
Studio, Forté, Visual Café, Visual Age, PowerJ, etc.) you can easily modify the procedure
to match your Java IDE.

This symbol indicates that the information given applies to JBuilder only. In the front of a
header it applies to the whole chapter, otherwise it applies to the current paragraph.

This symbol indicates that the information given applies to plain JDK only. In the front of a
header it applies to the whole chapter, otherwise it applies to the current paragraph.

To see more about how to use Multilizer read the online help and study the other sample
applications found in the samples subfolder.

Opening a Monolingual Application
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. This is what we are going to do.
The samples\tutorial contains the English Dcalc. Open it, compile it, and finally run
it.

The application should look like this:

Figure 72 The monolingual application using an English user interface

The user interface language is English and the application uses the default locale, witch
in this case is Finnish (Finland). The speeding ticket is formatted using the Finnish
currency format (mark) and the date and time is also formatted using the Finnish format.
Java enables this type of localization automatically.

In the following chapters we will make Dcalc truly multilingual step-by-step. First by using
Java's resource bundles and then by using Multilizer beans. Use the method of your

84 Multilizer 5.1 - Developer’s Guide

preference. See online help topic “Multilizer Components vs. Resource Bundles” for
comparison between resource bundles and Multilizer components.

Resource Bundle Localization
Java standard edition provides support for internationalization in java.util and
java.text packages. Localization is mainly done through resource bundles. This
chapter covers only the basic internationalization (I18N). Prefer I18N books and web sites
to get more information about. An excellent start is the Java tutorial at
http://www.javasoft.com/.

The following picture describes the Java standard edition localization process with
resource bundles and Multilizer.

Native
property files

French
property files

German
property files

English
property files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 73 Java localization process with resource bundles

The programmer uses Multilizer to extract strings from the original resource bundle (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource bundles (3). As the result there will be
one resource bundle for each localized language.

The following figure shows the files that Multilizer uses in the Java standard edition
localization process.

sample.properties sample.mpr sample_en.properties
sample_de.properties
sample_fr.properties

1 2
Resource file Project file Localized resource files

Figure 74 The files of the Java localization process with resource bundles

Resource Bundle Internationalization
To globalize your application you have to resource the application. Resourcing means
removing hard coded strings. Most applications contain strings that have been inserted
inside the source code. These strings are hard coded. It is impossible to localize such a
code without changing and recompiling the code. When you resource the code you will
take the strings from the source code and place to a resource bundle that can be easily
translated.

The main source code file of your application is tutorial/MainFrame.java. It
contains several hard coded strings. For example:
fineLabel.setText("dummy");
label4.setText("Speeding fine:");
label5.setText("Date and time:");
dateLabel.setText("dummy");
label7.setText("Current locale:");
localeLabel.setText("dummy");

http://www.javasoft.com/

 Multilizer 5.1 - Developer’s Guide 85

label9.setText("User interface language:");
languageLabel.setText("English");

Now we have to extract all the hard coded strings to a resource bundle. In this example
we use dcalc.properties property resource bundle.

In JBuilder you can create the resource bundle easily by using a wizard: Wizards |
Resource Strings. The wizard scans your source code, creates the bundle and makes
the necessary modifications in your source code.

Figure 75 JBuilder Resource wizard

Press New and change the Name to dcalc and Type to PropertyResourceBundle. Press
OK. Press Next twice. The wizard extracts strings from the source code. Press Finish to
complete the wizard.

In plain JDK create the PropertyResourceBundle by hand and take it in use.
public class MainFrame extends Frame
{
 static ResourceBundle res = ResourceBundle.getBundle("dcalc");

Wrap all hard coded strings inside the res.getString() method. Add all keys and their
native translations to the bundle. Remember that key values in a bundle aren’t allowed to
contain e.g. space characters and you have to use Unicode escapes for non-ASCII
characters.
fineLabel.setText(res.getString("dummy"));
label4.setText(res.getString("Speeding_fine_"));
label5.setText(res.getString("Date_and_time_"));
dateLabel.setText(res.getString("dummy"));
label7.setText(res.getString("Current_locale_"));
localeLabel.setText(res.getString("dummy"));
label9.setText(res.getString("User_interface"));
languageLabel.setText(res.getString("English"));

The last String ("English") should not be localized by translating it in a resource bundle.
Remove the line and add the following code to the constructor of MainFrame.
// Update the user interface language
languageLabel.setText(res.getLocale().getDisplayLanguage());

86 Multilizer 5.1 - Developer’s Guide

Use also elsewhere in the MainFrame Locale.getDefault() instead of
res.getLocale(). For example:
// Update the locale label
localeLabel.setText(res.getLocale().getDisplayName());

ResourceBundle.getLocale() is supported only by JDK 1.2 or later. With JDK 1.1.8
you have to use Locale.getDefault() instead of res.getLocale().

Creating a Resource Bundle Project
Double click the Multilizer icon from the Multilizer program group to launch Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

Figure 76 The Select Target sheet is used to specify the resource file to be localized.

This sheet specifies the directory where your application is located. Choose the
<mldir>\java\samples\tutorial subfolder of your Multilizer setup. Project Wizard
detects the application type. The Platform type should be Java and the Target type
should be JBuilder project file. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

 Multilizer 5.1 - Developer’s Guide 87

Figure 77 English and Finnish added to the project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

Figure 78 The translation grid

88 Multilizer 5.1 - Developer’s Guide

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.

Create localized resource bundles by choosing Project | Create Localized Items.

Now all the strings in Dcalc are localized and next time you start it, you get the system
default language version (if you translated the corresponding language).

Figure 79 Localized Dcalc application

Localization with Multilizer Components
Now the same Dcalc application will be localized with Multilizer beans. The Dcalc
application is very simple but still it uses most of the features of Multilizer beans. The
creation of the application is divided into several lessons each covering one or more
Multilizer feature.

Before you can start building multilingual Dcalc, you have to install Multilizer beans. To
get the information on how to install them, see the help files. Double-click the Java Help
icon of your Multilizer program group for more information.

Making the Application Multilingual
The first step is to make Dcalc multilingual, by just dropping two components to the form.
Select the Translator component from the Component Palette. Drop the
multilizer.Translator to the form. Drop the multilizer.TestDictionary
component to the form as well.

The result should look like this:

Figure 80 Translator and dictionary components have been added to the form

Add the following code below the import lines:
import multilizer.*;

 Multilizer 5.1 - Developer’s Guide 89

Add the following code just before the constructor of MainFrame:
TestDictionary testDictionary1 = new TestDictionary();
Translator translator1 = new Translator();

What are these two components for? TestDictionary is one of the dictionary components
of Multilizer. A dictionary component provides a string or a phrase translation for the
application. Normally each application contains one dictionary component that contains
all the translation data of the application. Multilizer contains several different dictionary
components: one for getting the translation data from a text file, another for getting data
from a database, etc.

The TestDictionary is a special case. It does not require any dictionary data but it makes
the translation on-the-fly by changing the original string to a test string. In a normal case
you can not use the test dictionary in your final application because the translations are
not any real language. However, the test dictionary is really handy in the development
phase.

The Translator on the other hand is the component that does all the work. It scans the
form before it becomes visible and translates the user interface string from the original
value to the current language.

Select translator1 component and move it to the Properties sheet. Drop down the value
list of the host property. Select this. This specifies the control that the translator should
translate. In the most cases it is the frame containing the translator component.

Add the following code to the jbInit function:

translator1.setHost(this);

Add the translator1.translate() line to the constructor of the MainFrame:
public MainFrame()
{
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try
 {
 jbInit();

 fineLabel.setText(NumberFormat.getCurrencyInstance(
 Locale.getDefault()).format(new Integer(100)));

 dateLabel.setText(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.MEDIUM,
 Locale.getDefault()).format(new Date()));

 localeLabel.setText(Locale.getDefault().getDisplayName(Locale.UK));

 translator1.translate();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

The translate method makes the translator to translate its host control. A proper place to
call this is the last line of the constructor.

Compile and run Dcalc. It should look like this:

90 Multilizer 5.1 - Developer’s Guide

Figure 81 “Translated” application. The test dictionary translated every string to upper cased
string

As you can see, every user interface string is now in upper case. The translator changed
every string type property after the form had been loaded from the resource. By default
the test project translates every string by putting it in upper case.

For additional information on using the test dictionary, see the online help topic
"TestDictionary".

This was a quick demonstration of the power of Multilizer. In the next chapter we will
create a real project that contains real languages.

Creating a Component Project
Creating a project for an application using components is fairly similar to the binary
project. The only differences are that you have to select a different target type and specify
the dictionary.

Figure 82 The Select Target sheet is used to specify the project file to be localized.

A few sheets later the wizard shows the Dictionary sheet that specifies the type of run-
time dictionary to be used by the dictionary component:

 Multilizer 5.1 - Developer’s Guide 91

Figure 83 Dictionary sheet is used to specify the dictionary type

This sheet specifies the type of dictionary. The online help describes each dictionary type.
Accept the default dictionary (Binary file) by pressing the Next button. The rest of the
wizard is similar to binary localization.

We recommend that you use the Binary dictionary, unless you specifically need to use
another type.

Now you can translate the project. When you are done translating, save the project and
create the run-time dictionary by selecting Project | Build Localized Items from the
menu.

Component Internationalization
We have the project file now. Let’s use them. Delete the TestDictionary component from
the form. Add the multilizer.BinaryDictionary component. Choose the
component and move to the Properties sheet. Set the fileName property to dcalc.mld
(i.e. the dictionary that you created in previous lesson). Set the name property to
dictionary1.

The JBuilder window should look like this:

92 Multilizer 5.1 - Developer’s Guide

Figure 84 The Properties window showing the properties of a binary dictionary component

Let’s study some of the properties. The language property specifies the active language.
By default it is –1. This makes Multilizer check the current locale of the user and find the
language that matches the locale. If none is found the first (non-native) language is used.

The locale property specifies the active locale. The active language determines the
language of the user interface. The active locale, however, determines the locale used by
the application. The locale is a country and language specific object that controls how the
date, time, currency, number, etc. are formatted.

In our case the project file contains English and Finnish. If the locale setting of the user is
Finnish (Finland) the user interface of Dcalc will be in Finnish and the locale will be
Finnish (Finland).

Add the following code just before the contructor of MainFrame:

BinaryDictionary dictionary1 = new BinaryDictionary();

Add the following code to the jbInit function.
dictionary1.setFileName("dcalc.mld");
translator1.setDictionary(dictionary1);

Run the application. It should look like this (if your system default locale is Finnish):

Figure 85 Dcalc in Finnish

 Multilizer 5.1 - Developer’s Guide 93

Making a multilingual application is this simple. In a simple case, this is all you have to do
to make a multilingual application. In most other cases you have do a little bit more.

If the program contains items which are just country (locale)-specific and hard coded in
the source, they must be removed. This phase is called internationalization: it makes your
software international and language/country independent. The next phase would then be
to localize the program, i.e., add for each target country the locale-specific issues. This is
done easily by using Multilizer beans. The remaining document discusses how to do this.

Dcalc calculates the average driving time. Most countries use the metric system, where
the distance is expressed in kilometers. However in the US miles are used. Let’s study
how to make Dcalc compatible with both kilometers and miles.

When pressing the Calculate button Dcalc calls the following event:
void calculateButton_actionPerformed(ActionEvent e)
{
 int distance;

 try
 {
 distance = Integer.valueOf(textField.getText().trim()).intValue();
 if (distance < 0)
 throw new NumberFormatException();

 String[] params =
 {
 new Integer(distance/100).toString(),
 new Integer((int)(60*(distance%100)/100)).toString()
 };

 MessageDialog.messageBox(
 this,
 "Driving Time",
 MessageFormat.format("The average driving time is {0} hours and {1}
minutes", params),
 MessageDialog.OK);
 }
 catch (NumberFormatException ex)
 {
 String[] params = { textField.getText() };

 MessageDialog.messageBox(
 this,
 "Invalid value",
 MessageFormat.format("\"{0}\" in not a valid distance", params),
 MessageDialog.OK);
 textField.requestFocus();
 }
}

When the English (United States) locale is on the user gives the distance in miles. To
convert miles to kilometers add the following just before
String[] params =;
if (Utils.getMeasurementSystem(dictionary1.getActiveLocale()) ==
Utils.US_MEASUREMENT)
 distance = (int)Utils.MILE_IN_METERS*distance/1000;

This is enough for the system to convert miles to kilometers but not enough for the user.
The user will most definitely be a bit confused if the user interface still prompts in
kilometers. To make user interface react on the locale change the languageChanged
event to the translator component and writes the following code:
void translator1_languageChanged(DictionaryEventObject e)
{
 if (Utils.getMeasurementSystem(dictionary1.getActiveLocale()) ==
Utils.US_MEASUREMENT)
 unitLabel.setText(translator1.translate("in miles")); //mlz
 else

94 Multilizer 5.1 - Developer’s Guide

 unitLabel.setText(translator1.translate("in kilometers")); //mlz

 fineLabel.setText(NumberFormat.getCurrencyInstance(
 dictionary1.getActiveLocale()).format(new Integer(100)));

 dateLabel.setText(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.MEDIUM,
 dictionary1.getActiveLocale()).format(new Date()));

 localeLabel.setText(Utils.getLocaleName(
 dictionary1.getActiveLocale(), dictionary1));
 languageLabel.setText(dictionary1.translate(
 dictionary1.getLanguageData().englishName));
}

Add the following code the the jbInit function. It adds the languageChanged event to the
translator.
translator1.addLanguageChangeListener(new multilizer.DictionaryListener()
{
 public void languageChanged(DictionaryEventObject e)
 {
 translator1_languageChanged(e);
 }
});

First the code checks the measurement system. This is done by comparing the
measurementSystem variable of the active locale. The code updates the text and help
string. Let’s study the following code in more detail:
unitLabel.setText(translator1.translate("in kilometres"));

In a monolingual application you would have used the following code:
unitLabel.setText("in kilometres");

This isn’t the proper way in a multilingual application because the same EXE file must
work on every language and locale. That’s why the native string is translated before being
assigned to the Caption property.

The lower part of the event updates the speeding fine, current time, active language
name, and active locale name.

The constructor monolingual MainFrame contains the following code:
fineLabel.setText(NumberFormat.getCurrencyInstance(
 Locale.getDefault()).format(new Integer(100)));

dateLabel.setText(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.MEDIUM,
 Locale.getDefault()).format(new Date()));

localeLabel.setText(Locale.getDefault().getDisplayName(Locale.UK));

This code is not required any more because the dictionary1_languageChanged event
updates the labels. You can remove it.

We need to make a few modifications to the calculateButton_actionPerformed event to
make the message boxes multilingual. Consider the following code:
MessageDialog.messageBox(
 this,
 "Driving Time",
 MessageFormat.format("The average driving time is {0} hours and {1}
minutes", params),
 MessageDialog.OK);

 Multilizer 5.1 - Developer’s Guide 95

Multilizer can not translate the standard message dialogs. You must use Multilizer’s own
multilizer.MessageDialog or add a translator component to the message dialog.
multilizer.MessageDialog.messageBox(
 this,
 "Driving Time", //mlz
 Utils.formatMessage(
 "The average driving time is {0} hours and {1} minutes", //mlz
 params,
 dictionary1),
 MessageDialog.OK,
 new Translator(dictionary1));

Remember that you have to translate the exception message as well.
multilizer.MessageDialog.messageBox(
 this,
 "Invalid value", //mlz
 Utils.formatMessage(
 "\"{0}\" in not a valid distance", //mlz
 params,
 dictionary1),
 MessageDialog.OK,
 new Translator(dictionary1));

Translate the message box in the aboutMenuItem_actionPerformed event.
multilizer.MessageDialog.messageBox(
 this,
 "About DCALC", //mlz
 "DCALC calculates the driving time.", //mlz
 MessageDialog.OK,
 new Translator(dictionary1));

In this case you do not have to translate the text parameter but you can let the
MessageDialog translate it. This is because the message is not parametrized.

Most string constants in the above code examples are trailed with the mlz comment. The
comment is a tag for the Multilizer. You can use tags to control Multilizer when extracting
the strings and adding them to the project file. You can configure tags by editing your
Multilizer project's Scan Targets.

Changing Language at Run-Time
Dcalc now has the ability to adapt to the current language and locale settings of the user.
What about changing the language and/or locale at run-time? Is this possible? Yes.

Double click the File menu and move to the white area (Type Here) on the bottom of the
menu. Type &Language…. Move the memo on the top of the Exit menu.

The result should look like this:

Figure 86 Add the Language menu item to the main menu

Add the following code just before the constructor of MainFrame:
MenuItem menuItem1 = new MenuItem();

Add the following code int the jbInit function:

96 Multilizer 5.1 - Developer’s Guide

menuItem1.setLabel("Language...");
menuItem1.addActionListener(new java.awt.event.ActionListener()
{
 public void actionPerformed(ActionEvent e)
 {
 menuItem1_actionPerformed(e);
 }
});
fileMenu.add(menuItem1);

Write the following event handler to the Language… menu item:
void menuItem1_actionPerformed(ActionEvent e)
{
 SelectLanguageDialog dialog = new SelectLanguageDialog(
 this,
 new Translator(dictionary1),
 false);

 if (dialog.showModal())
 dictionary1.setLanguage(dialog.getLanguage());
}

The dialog box contains a list of available languages that the user can select. After
showing the dialog the event sets the new active language by setting the language
property of the project file component.

Run the application and choose File | Language… (Or Tiedosto | Kieli… if you have
Finnish active). The following dialog box appears:

Figure 87 The Select Language dialog box lets the user select the active language at run-time

The SelectLanguage dialog box shows all available languages in a list box.

Select a new language and press the OK button. The active language (user interface) of
Dcalc changes to that language. By default the active locale also changes to the default
locale of the language. You can set the active language and locale independently by
setting the binding property of the dictionary component to false.

The SelectLanguageDialog dialog box contains strings that need to be translated as well.
Also the MessageDialog uses several strings (e.g. “OK”, “Cancel”). The string tables of
the Multilizer contain all these constant strings. All you need to do is to add them to your
project file. Launch Multilizer. Open the project file. Choose Project | Include Strings |
System Strings. The System Strings dialog box appears. Check Language Dialog, and
Message Dialog check boxes.

 Multilizer 5.1 - Developer’s Guide 97

Figure 88 The System Strings dialog box lets the developer add strings used by the system or by
the standard components

Press the OK button. Multilizer adds the strings used by the selected items. Let Multilizer
get the translations from the translation memory: Select any cell in the Finnish column.
Choose Language | Translate | Using Translation Memory.

Now our Dcalc application is fully multilingual. The user interface, locale settings, and
input measures match the local settings. The user can even change the language at run-
time. The remaining chapters describe some of the advanced features of Multilizer.

Writing Multilingual Applets
Writing multilingual applets is as easy as writing multilingual applications. However you
have to notice the following items:

• To make the applet compatible with most browsers use the AppletTranslator
component instead of the Translator component.

• Set the applet property of the dictionary component to refer to the applet.

• Take the dictionary away from the destroy method. For example:
public void destroy() {
 dictionary1.dispose();
 }

For additional information on writing applets, see the Dcalc and Euro applets from the
samples subfolder.

Writing Multilingual Swing Applications
Writing multilingual Swing application is as easy as writing multilingual AWT applications.
However you have to notice the following:

• Add the SwingModule bean to the main frame. This adds the Translator bean the
ability to translate the Swing components.

Learn more from the online documentation and samples.

Swing applets are not fully supported by Multilizer beans. See swing applet sample from
the samples subfolder for additional information.

Font Issue with Non-Western Languages
Java uses Unicode strings. That’s why in theory every Java application can display any
characters. Unfortunately Java must always work on the top of the host platform (e.g.
Windows, Linux, Solaris). The host platform does not necessary contain the font support
needed by the language.

You might need to update the font.properties files of your Java run-time environment to
add Far Eastern and Middle Eastern fonts. See JDK documentation for more information.

98 Multilizer 5.1 - Developer’s Guide

11
Java Micro Edition

In this tutorial we are going to create a localized J2ME (Java Micro Edition) application.
The application will be a simple driving-time calculator, Dcalc that a user can use to
calculate the average driving time for a given distance. We use MID profile (MIDP).

The Dcalc application is very simple but still it uses most features of Multilizer. The
creation of the application is divided into several lessons, each covering one or more
Multilizer functions.

J2ME Localization
Java Standard Edition (J2SE) contains very rich support for localization. J2SE contains
locale class, resource bundles and formatting classes. Unfortunately Java Micro Edition
(J2ME) does not contain these classes. It only contains very low-level resource class that
the application can use to access resource file. The current CLDC-configuration has the
following I18N-support:

- java.lang.Class.getResourceAsStream(String name) that returns the
input stream for the resource file.

- java.lang.System.getProperty(String name). When passed
"microedition.locale" as a parameter this returns the system locale of the
configuration.

In theory this could be just enough support for I18N for simple applications. However
using the getResourceAsStream to get the localized user interface strings is rather
complicated. This is because getResourceAsStream is a very low level function. It just
gives you the access to raw resource file data. The J2ME programmer needs to write a
large amount of code to get the localized user interface strings from the resource file.

J2SE contains two kinds of resource files: property files and list files. The property file
contains the translations of the strings in one language, one translation in a row. List files
use similar approach but they represent data inside a Java class. Without having the
resource bundle class a J2ME programmer has two choices to localize his or her
application.

- Write own code on the top of java.lang.Class.getResourceAsStream. This is
a complicated task and the memory consumption might be too high.

- Change the strings in the java source code. This might seem as an easy solution but
it leads the programmer into troubles if the application source code changes. Either
the programmer needs to do the same changes to every single localized java code
or retranslate the localized java source codes again. Both approaches are difficult to
implement, slow and error prone.

Because J2ME doesn't support property files (through PropertyResourceBundle) nor list
files (through ListPropertyFiles), Multilizer contains a small footprint resource bundle class
and format that is suitable for J2ME.

With Multilizer you are able to globalize your J2ME applications. The
multilizer.microedition.Properties class has the main role. Using it is pretty
similar to using J2SE PropertyResourceBundles. It's even possible to use your old J2SE
property files directly through it.

 Multilizer 5.1 - Developer’s Guide 99

multilizer.microedition works on a top of the CLDC configuration.
multilizer.microedition is profile independent so it works with any CLDC profile
such as MIDP and PDA profile. It is also small (3 Kbytes) and memory efficient.

Property files may be UTF-8 or ISO8859-1 encoded. This makes the Properties class
backward compatible to ISO8859-1 encoded property files. Using UTF-8 encoding makes
the files more understandable, because you don't have to use Unicode escapes for non-
ASCII characters. UTF-8 also helps conserving the memory because none English UTF-8
files are considerably smaller than Unicode escaped ASCII files.

The following picture describes the J2ME localization process.

Native
property files

French
property files

German
property files

English
property files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 89 J2ME localization process

The programmer uses Multilizer to extract strings from the original property file (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized property files (3). As the result there will be one
property file for each localized language.

The following figure shows the files that Multilizer uses on the J2ME localization process.

sample.properties sample.mpr en/sample.properties
de/sample.properties
fr/sample.properties

1 2
Property file Project file Localized property files

Figure 90 The files of the J2ME localization process

Add the localized property file (e.g. de/sample.properties) instead of the original
property file (sample.properties) to the setup package when building a localized
application.

Application With An English User Interface
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. This is what we are going to do.
The JavaME\samples\tutorial contains the English Dcalc. Open it, compile it, and
finally run it.

The application should look like this:

100 Multilizer 5.1 - Developer’s Guide

Figure 91 J2ME application with an English UI

The user interface language is English. In the following chapters we will localize Dcalc
step-by-step.

Internationalization
To globalize your application you have to resource the application. Resourcing means
getting rid of hard coded strings. Most applications contain strings that have been
inserted inside the source code. These strings are hard coded. It is impossible to localize
such code without changing and recompiling the code. When you resource the code you
take the strings from the source code and place them to a resource file that can easily be
translated.

The main source code file of your application is dcalc/Dcalc.java. It contains several
hard coded strings. For example:
public class Dcalc extends MIDlet implements CommandListener
{
 …
 private StringItem distanceLabel = new StringItem(
 null,
 "Distance (km)");
 …
}

This contains a hard coded string: "Distance (km)". The class contains several others
as well.

Our first task is to create the property file and take it in use in the midlet. Let’s give the
property file the same name as the midlet: dcalc.properties. Using the property file

 Multilizer 5.1 - Developer’s Guide 101

in the midlet is easy. Just create a multilizer.microedition.Properties
instance and pass the property file name as the parameter.
public class Dcalc extends MIDlet implements CommandListener
{
 private Properties prop = new Properties("/dcalc/Dcalc.properties");
 …
}

Use Properties(String) if your property files are in UTF-8 format. If you want to use
the same format (ISO8859-1) as J2SE property files use Properties(String, int)
instead.

Resourcing the code is done with the getString method. In general you should wrap
every single string that need to be translated inside the getString method. So change
the above code to:

public class Dcalc extends MIDlet implements CommandListener
{
 private Properties prop = new Properties("/dcalc/Dcalc.properties");
 …
 private StringItem distanceLabel = new StringItem(
 null,
 prop.getString("Distance (km)"));
 …
}

Add the string to the property file:
Distance (km)<tab>Distance (km)

The property file format is key<separator>value. Where the key is the string inside
the getString method and the value is the translation. The separator can either be a
tab or the ‘=’ character.

Process every hard coded string in the same way. As a result you will have a completed
property file and an internationalized midlet source code file.

Distance (km) Distance (km)
Speed (km/h) Speed (km/h)
Driving calculator Driving calculator
Calc Calc
About About
Exit Exit

The Message.java file also has to be resourced. We need also complete one extra task
with this file. Let’s consider the following code in the showItem method:
 alert.setString(
 new Integer(hours) + " hours " +
 new Integer(minutes) + " minutes");

We could resource “hours“ and “minutes” by wrapping them with the getString method.
However that would not be very good internationalization because the above code always
assumes that the message has the following form <hour value> <hour label> <minute
value> <minute label>. There are languages that use the label first and the value next.
Also some countries prefer to show the minutes first and hours next.

To solve this problem we will use multilizer.microedition.MessageFormat class
where the whole message is put in the message pattern and the pattern is combined with
data at run-time to produce the actual message.
 Object[] args = {new Integer(hours), new Integer(minutes)};

 alert.setString(MessageFormat.format(
 prop.getString("{0} hours {1} minutes"),

102 Multilizer 5.1 - Developer’s Guide

 args));

Now the property file contains the message pattern, {0} hours {1} minutes. The
translator can easily relocate the items in the pattern.

This chapter has covered only basic internationalization (I18N). Refer to I18N books and
web sites to get more information. An excellent start is the Java tutorial at
www.javasoft.com.

Creating a New Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

Figure 92 The File Target sheet is used to enter the source directory

This dialog specifies the directory where your application is located. Choose the
<multilizer>\JavaME\samples\tutorial\dcalc folder. Your application contains two property
files (.properties). Select the Dcalc.properties file. Project Wizard detects the
platform and project types. The Platform type should be Java and the Target type should
be Micro Edition property file. If they are wrong, check the right types.

If you have not completed the previous chapter the above directory does not contain the
property file. In that case copy the property files from the
<multilizer>\JavaME\samples\midlet\dcalc\dcalc directory.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

 Multilizer 5.1 - Developer’s Guide 103

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 93 English and Finnish added to the project file

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

104 Multilizer 5.1 - Developer’s Guide

Figure 94 The project file grid

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project save it by choosing File | Save.

Create the localized resource files by choosing Project | Create Localized Items. This
creates the localized property files (.properties) in the language specific subdirectories
(‘en’ and ‘fi’).

Now you can make the localized versions of the application. Edit for example your build
script to include the right properties files for each languages setup packages.

 Multilizer 5.1 - Developer’s Guide 105

Figure 95 Localized Dcalc application

106 Multilizer 5.1 - Developer’s Guide

12
Visual J++

In this tutorial we are going to create a multilingual application. The application will be a
simple driving-time calculator, Dcalc that a user can use to calculate the average driving
time for the given distance.

Dcalc application is very simple but still it uses most features of Multilizer. Application
creation is divided into ten lessons each covering one or more Multilizer issues.

This tutorial is for Visual J++ 6.

Dcalc sample application is located in the WFC\Samples\Dcalc subfolder of your
Multilizer directory.

To study more about how to use Multilizer read the online help and study the other
sample applications found from the WFC\Samples subfolder.

Before you can start building Dcalc you have to install Multilizer components to the
Component Palette. To get the information how to install them, see the readme files.
Double click the WFC Readme icon of the compiler to open the readme.

Open a Monolingual Application
We could start from scratch but in most cases it is a finished application or at least an
application under development that you want to globalize. We are going to work with a
finished application. The WFC\Samples\Tutorial contains the English Dcalc. Open it,
compile it, and finally run it.

The application should look like as this:

Figure 96 The monolingual application with an English user interface

The user interface language is English and the application uses the default locale that is
in this case Finnish (Finland). The speeding ticket is formatted using the Finnish currency
format (mark) and the date and time are also formatted using the Finnish format.
Standard WFC provides this kind of globalization through NLSAPI.

In the following chapters we will make Dcalc truly multilingual step-by-steps.

 Multilizer 5.1 - Developer’s Guide 107

Make Application Multilingual
The first step is to make Dcalc multilingual just dropping two components to the form.
Select the Translator component from the Toolbox. Drop the Translator to the form. Drop
the TestDictionary component to the form as well.

The result should look like this:

Figure 97 Translator and dictionary components have been added to the form

TestDictionary is one of the dictionary components of Multilizer. A dictionary component
provides string or phrase translation for the application. Normally each application
contains one dictionary component that contains all the translation data of the application.
Multilizer contains several different dictionary components: one getting the translation
data from a text file, the other from a database, etc.

The TestDictionary component is a special case. It does not require any dictionary data
but it makes the translation on-the-fly by changing the original string to a test string. In a
normal case you can not use the test dictionary in your final application because the
translation is not a real language. However, the test dictionary is really handy in the
development phase.

The Translator on the other hand is the component that makes all the work. It scans the
form before it comes visible and translates the user interface string from the original value
to the current language.

Move to the Properties windows. Drop down the value list of the Host property. Select
Form1. This specifies the control that the translator should translate. In most cases it is
the form containing the translator component.

Add the following line to the constructor of the Form1:
public Form1()
{
 initForm();
 translator1.translate();
}

The translate method makes the translator to translate its host control. A proper place to
call this is just before the form becomes visible. Another possible place would have been
the activate event:

private void Form1_activate(Object source, Event e)
{
 translator1.translate();
}

Compile and run Dcalc. It should look like this:

108 Multilizer 5.1 - Developer’s Guide

Figure 98 “Translated” application. The test dictionary translated every string to upper cased
string

As you can see, every user interface string is now in upper-case. The translator changed
every string type property after the form had been loaded from the resource. By default
the test dictionary translates every string by upper-casing it.

For additional information on using the test dictionary, see the online help topic
"TestDictionary".

This was a quick demonstration of the power of Multilizer. In the next chapter we will
create a real dictionary that contains real languages.

Create a Project for the Application
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

Figure 99 The File Target sheet is used to specify the project file

This sheet specifies the location of your application. Choose the
<mldir>\WFC\Samples\Tutorial subfolder. Project Wizard detects the platform and

 Multilizer 5.1 - Developer’s Guide 109

project types. The Platform type should be Java and the Target type should be Visual J++
project filw with Multilizer components. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 100 English and Finnish added to a project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

110 Multilizer 5.1 - Developer’s Guide

Figure 101 The project grid

Save the project by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.

Internationalize Your Code
We now have a project file. The next step is to delete the TestDictionary component from
the form. Next, add the BinaryDictionary component. Choose the component and move to
the Properties window. Set the fileName property to dcalc.mld (i.e. the dictionary that
you created in previous lesson). Set the name property to dictionary1.

If you pressed the … button and browsed the file name, the Properties window would add
the full file name (e.g. C:\Program
Files\Multilizer\WFC\Samples\Tutorial\dcalc.mld). This may cause
troubles when deploying your application so remove the path part from the file name.

The Properties window should look like this:

 Multilizer 5.1 - Developer’s Guide 111

Figure 102 The Properties window showing the properties of a binary project file component

Let’s study some of the properties. The language property specifies the active language.
It is –1. This makes Multilizer check the current locale of the user and to find the language
that matches the locale. If none is found the first (none-native) language is used.

The primaryLanguage and the subLanguage properties specify the active locale. The
active language determines the language of the user interface. The active locale however
determines the locale used by the application. The locale is a country and language
specific object that control for how the date, time, currency, number, etc are formatted.

The primaryLanguage property is 0 and the subLanguage property is 1. These makes
Multilizer use the default locale of the user. See more from the online documentation at
the Dictionary topic.

In our case the project file contains English and Finnish. If the locale setting of the user is
Finnish (Finland) the user interface of Dcalc will be in finish and the locale will be Finnish
(Finland).

Run the application. It should look like this:

Figure 103 Dcalc in Finnish

Making a multilingual application is this simple. In a simple case, this is all you have to do
to make a multilingual application. In most cases you have do a little bit more.

112 Multilizer 5.1 - Developer’s Guide

If the program contains code, which is just country (locale) specific and hard coded in the
source, it must be removed. This phase is called internationalization: it makes your
software international and language/country independent. Next phase would then be to
localize the program, i.e., add for each target country the locale specific issues. This is
done easily by using Multilizer. Remaining document discuss how to localize your
application.

Dcalc calculates the average driving time. Most countries use metric system where the
distance is expressed in kilometers. However in US miles are used. Let’s study how to
make Dcalc compatible both with kilometers and with miles.

When pressing the Calculate button Dcalc calls the following event:
private void calculateButton_click(Object source, Event e)
{
 try
 {
 int distance = Integer.parseInt(distanceEdit.getText());
 if (distance < 0)
 throw new Exception();

 int hours = distance/100;
 int minutes = (int)(0.6*(distance%100));

 MessageBox.show(
 Utils.format(
 "The avarage driving time is %0 hours and %1 minutes.",
 new String[] {
 new Integer(hours).toString(),
 new Integer(minutes).toString()}),
 getText(),
 MessageBox.ICONINFORMATION | MessageBox.OK);
 }
 catch (Exception ex)
 {
 MessageBox.show(
 Utils.format(
 "\"%0\" is not a valid distance!",
 new String[] {distanceEdit.getText()}),
 getText(),
 MessageBox.ICONERROR | MessageBox.OK);
 distanceEdit.focus();
 }
}

When the English (United States) locale is selected, the user gives the distance in miles.
To convert miles to kilometers, add the following to just before line
int hours = distance/100;
if (dictionary1.getLocaleData().measurementSystem == Measurement.US)
 distance = (int)(Measurement.MILE_IN_METERS*distance/1000);

This is enough for the system to convert miles to kilometers but more has to be done to
make a truly localized application. The user will most definitely be a bit confused if the
user interface still prompts in kilometers. To make user interface react on the locale add
the languageChange event to the dictionary component and write the following code:
private void dictionary1_languageChange(Object source, LanguageEvent e)
{
 if (dictionary1.getLocaleData().measurementSystem ==
Measurement.METRIC)
 {
 unitLabel.setText(dictionary1.translate("in kilometres"));
 helpProvider1.setHelpString(
 unitLabel,
 dictionary1.translate("Give the driving distance in kilometres"));
 }
 else
 {
 unitLabel.setText(dictionary1.translate("in miles"));

 Multilizer 5.1 - Developer’s Guide 113

 helpProvider1.setHelpString(
 unitLabel,
 dictionary1.translate("Give the driving distance in miles"));
 }

 speedingFine.setText(java.text.NumberFormat.getCurrencyInstance(
 dictionary1.getLocaleData().getJavaLocale()).format(500));

 currentTime.setText(DateFormat.getTimeInstance(
 DateFormat.MEDIUM,
 dictionary1.getLocaleData().getJavaLocale()).format(new Date()));

 currentLocale.setText(dictionary1.getLocaleData().getDisplayName(
 multilizer.Locale.TRANSLATED,
 dictionary1));

 currentLanguage.setText(
 dictionary1.translate(dictionary1.getLanguageData().englishName));
}

At first the code checks the measurement system. This is done by comparing the
measurementSystem variable of the active locale. The code updates the text and help
strings. Let’s study the following code in more detail:
unitLabel.setText(dictionary1.translate("in kilometres"));

In a monolingual application you would have used the following code:
unitLabel.setText("in kilometres");

This isn’t a proper way in a multilingual application because the same EXE file must work
on every language and locale. That’s why the native string is translated before assigned
to the Caption property.

The lower part of the event updates the speeding fine, current time, active language
name and active locale name.

The monolingual Dcalc contains the following event:
private void Form1_activate(Object source, Event e)
{
 speedingFine.setText(Value.formatCurrency(500, 2));
 currentTime.setText(new Time().formatShortDate() + ", " +
 new Time().formatShortTime());
}

The event is not required any more because the dictionary1_languageChange event
updates the labels. You can remove it.

We need to make a few modifications to the calculateButton_click event to make the
message boxes multilingual. Read the following code:
MessageBox.show(
 Utils.format(
 "The avarage driving time is %0 hours and %1 minutes.",
 new String[] {
 new Integer(hours).toString(),
 new Integer(minutes).toString()}),
 getText(),
 MessageBox.ICONINFORMATION | MessageBox.OK);

Multilizer can not translate the standard message dialogs. You must use Multilizer’s own
MessageDlg.
MessageDlg.show(
 Utils.format(
 dictionary1.translate("The avarage driving time is %0 hours and %1
minutes."),
 new String[] {
 new Integer(hours).toString(),
 new Integer(minutes).toString()}),
 getText(),

114 Multilizer 5.1 - Developer’s Guide

 MessageDlg.INFORMATION_ICON,
 MessageDlg.OK_BUTTON);

Remember, that you have to translate the exception message as well.
MessageDlg.show(
 Utils.format(
 dictionary1.translate("\"%0\" is not a valid distance!"),
 new String[] {distanceEdit.getText()}),
 getText(),
 MessageDlg.ERROR_ICON,
 MessageDlg.OK_BUTTON);

Translate the message box in the AboutMenuClick event.
MessageDlg.show(
 "Dcalc is a multilingual application that calculates the average
driving time", //mlz
 getText(),
 MessageDlg.NO_ICON,
 MessageDlg.OK_BUTTON);

In this case you do not have to translate the text parameter but you can let the
MessageDlg translate it. This is because the message is not parametrized.

Change Language at Run-Time
Dcalc has now the ability to adapt to the current language and locale settings of the user.
What about changing the language and/or locale at the run-time? This is possible as well.
Double click the File menu and move to the white area (Type Here) on the bottom of the
menu. Type &Language…. Move the memo on the top of the Exit menu.

The result should look like this:

Figure 104 Add the Language menu item to the main menu

Write the following event handler to the Language… menu item:
private void languageMenu_click(Object source, Event e)
{
 int language = SelectLanguage.selectLanguage(dictionary1);

 if (language >= 0)
 dictionary1.setLanguage(language);
}

The selectLanguage shows the Language Select dialog box of Multilizer. It contains a list
of available language that the user can select. After calling the selectLanguage function
the event sets the new active language by settings the language property in dictionary
component.

Run the application and choose File | Language… (Or Tiedosto | Kieli… if you have
Finnish active). The following dialog box appears:

 Multilizer 5.1 - Developer’s Guide 115

Figure 105 The Select Language dialog box that lets the user select the active language at run-
time

The SelectLanguage dialog box shows all available languages in a tree view. The
available language does not necessarily mean that all the languages of the project file are
being displayed. It may be that your operating system cannot cope with all character
scripts.

For example you need to have a bi-directional OS to properly display Arabic or Hebrew.
Also most Western OS versions lack the support for Cyrillic or Far Eastern languages.
You can force dictionary component and SelectLanguage function to display every
language by setting the checkSupport property of the dictionary component to false.

Select a new language and press the OK button. The active language (user interface) of
Dcalc changes to that language. By default the active locale also changes to the default
locale of the language. You can set the active language and locale independently by
setting the binding property of the dictionary component to false.

The SelectLanguage dialog box contains strings that need to be translated as well. Also
the MessageDlg uses several strings (e.g. “OK”, “Cancel”). The string tables of Multilizer
contain all these constant strings. All you need to do is to add them to your project file.
Launch Multilizer. Open the project file. Choose Project | Include | System String. The
System String dialog box appears. Check Language Dialog, Message Box, and System
Menu check boxes.

116 Multilizer 5.1 - Developer’s Guide

Figure 106. The System Strings dialog box lets the developer add strings used by system or by the
standard components

Press the OK button. Multilizer adds the strings used by the Select Language dialog, and
the system menu. The glossaries contain translations of these strings. You do not have to
translate them but let Multilizer get translations from the glossaries: select any cell in the
Finnish column. Choose Language | Translate | Using Translation Memory.

Now our Dcalc application is fully multilingual. The user interface, locale settings, and
input measures match the local settings. The user can even change the language at run-
time. The remaining chapters describe some of the advance features of Multilizer.

 Multilizer 5.1 - Developer’s Guide 117

13
Symbian

In this tutorial we are going to localize a Symbian application. The application is a simple
driving-time calculator, Dcalc, which a user can use to calculate the average driving time
for a given distance. The Dcalc application is very simple but nevertheless uses most
Multilizer’s features. The localization of the application is divided into several lessons,
each covering one or more Multilizer functions.

Symbian Localization
Symbian applications use resource files (.rsc). Each application file (e.g. sample.app)
must have a corresponding resource file (e.g. sample.rsc). Multilizer creates the
localized resource files from the original resource source file (.rss). The following picture
describes the Symbian localization process.

Symbian project file

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Multilizer
Project file

Translated
Project file

French resources
German resources

Application

English resourcesResource source file

or

Figure 107 Symbian localization process

The process of localizing Symbian applications can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the resource source file(s)
(.rss) belonging to the selected Symbian project file (.mmp). Multilizer saves
these strings into its project file (.mpr).

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file. Translators send the translated project files back to the
programmer who imports them to the project files.

3. The programmer uses Multilizer or Builder to create the localized preprocessed
resource source files (.rpp) and compiles them to the resource files (.rsc).

Multilizer creates three files for each language. The files will be written to a language
specific directory (e.g. de for German). The first file is the localized preprocessed
resource file (.rpp). It is a file that has been first preprocessed and then translated. It is
written in Unicode (UTF-8) format even if the native resource source file uses Windows
code page (1252). The second and third files are compiled resource files. They differ only
by their file extensions. The first one has the default file extension .rsc. The second one
has the localized file extension. Each language or locale has its own extension. For
example .r01 is English, .r02 is French, .r10 is English (United States).

118 Multilizer 5.1 - Developer’s Guide

In addition Multilizer creates two skeleton files. The first is the installation package file.
The name equals to the Symbian project file but the file extension is .pkg.ml. Read
more information from the Deploying paragraph later on this chapter. The second is the
AIF resource file. The name equals to the Symbian project file but the file extension is
aif.rss.ml.

The following figure shows the files that Multilizer uses in the Symbian project file
localization process.

sample.rss sample.mpr en/sample.rpp
fr/sample.rpp
de/sample.rpp

en/sample.rsc
fr/sample.rsc
de/sample.rsc

1 2 3
Resource source file Multilizer project file Localized resource source files Localized compiled resource files

sample.mmp 0
Symbian project file

en/sample.r01
fr/sample.r02
de/sample.r03

sample.pkg.ml, sampleaif.rss.ml

Figure 108 The files of the Symbian project file localization process

Instead the project file (.mmp) the programmer can specify a Symbian resource file
(.rss). The process is similar to the project file localization.

sample.rss sample.mpr en/sample.rpp
fr/sample.rpp
de/sample.rpp

en/sample.rsc
fr/sample.rsc
de/sample.rsc

1 2 3
Resource source file Project file Localized resource source files Localized compiled resource files

en/sample.r01
fr/sample.r02
de/sample.r03

Figure 109 The files of the Symbian resource file localization process

To use the localized resource file (e.g. de/sample.rsc or de/sample.rsc), deploy it
to the Symbian device instead of the original resource file (e.g. sample.rsc).

In order to preprocess and compile the resource file, and to run the localized Symbian
application, Multilizer needs to know the locations of the Symbian preprocessor, resource
compiler and emulator. When Multilizer runs first time it tries to find them from the hard
disk. To edit these settings start Multilizer and choose Tools | Options | Symbian menu.
The following dialog box appears:

Figure 110 The Symbian Options dialog box

By default the tree contains all the Symbian SDKs that have been installed to the
computer. If the SDK tree is empty, right mouse click the tree, choose Add, and enter
SDK settings manually. You must select at least the SDK version and enter the
preprocessor path and the include directory. In order to build the localized files you have
to enter the resource compiler path and device identifier (OS 7 or later).

 Multilizer 5.1 - Developer’s Guide 119

Application Using an English User Interface
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to localize. This is what we are going to do.
The Symbian\Samples directory contains several subdirectories. One for each Symbian
SDK. Each subdirectory contains the Tutorial subdirectory. For example
Symbian\Samples\Series60\Tutorial contains the English Dcalc using Series 60
SDK. Select the tutorial for the SDK that you have installed. Open it, compile it, and finally
start the emulator. To start the application, press the Dcalc icon. The application
launches:

Figure 111 Series 60 emulator and Dcalc application with an English user interface

The user interface language is English. In the following chapters we will localize Dcalc
step-by-step.

Internationalization
Internationalization is the process of generalizing a product so that it can handle multiple
languages and cultural conventions without the need for re-design; re-engineering source
code so that products and applications are compatible with country-specific operating
systems and software. Internationalization (I18N) takes place at the level of program
design and document development. I18N is defined as the set of processes, tools, coding
techniques and procedures used to write a software program that supports all of the
language requirements and country conventions of all of the countries where the software
will be used. For instance, writing an I18N ready application that supports the writing
systems for Japan and English, including the special sorting for the different alphabets.
The user interface of an I18N ready application is still in English, but the base code
supports the language requirements for both languages.

120 Multilizer 5.1 - Developer’s Guide

Apart from general considerations about I18N processes, there are no specific
requirements for Symbian localization. Naturally all the localizable resources will have to
be placed in the .rss files and not within the application’s code.

The I18N process for the Symbian applications is nevertheless rather transparent to
developers and translators alike. Developer should not be concerned with how different
the application might look when localized because the sizes of most of the visual
components are determined at run time by the operating system and also the translator is
quite free when choosing the appropriate translations without the constraints coming from
the differences between languages.

By default Multilizer localizes all strings in the .rss file. However you can disable
localization of a string by adding an exclude tag. It is a nomlz comment at the end of the
line where the string is located.
RESOURCE TBUF text1 { buf="Do not scan me"; } //nomlz

Multilizer does not localize the above string.

Sometimes it is usefull to add a comment for a string. The comment gives translator an
extra information about the string. Comments are added using the include tag. It is similar
to the exclude tag but the tag is mlz. Any string after the tag is considered as a comment.
RESOURCE TBUF text1 { buf="Hello world"; } //mlz This is a comment

Multilizer add "This is a comment" comment for the "Hello world" string.

Symbian devices have limited screen size. This is why the length of the string must be as
short as possible. Resource files support rather long strings. Up to 518 characters. In
most cases this is way too long. This is why you can set the maximum string that the
translation can have. Use the include tag to set the maximum length. The length can be
given in characters or in pixels. To use characters add MaxChars=N at the end of the
comment where N is the maximum length of the string in characters. To use characters
add MaxPixels=N at the end of the comment where N is the maximum length of the string
in pixels.
RESOURCE TBUF text1 { buf="Hello world"; } //mlz MaxChars=15
RESOURCE TBUF text2 { buf="Hello world"; } //mlz This is a comment
MaxPixels=30

The first string has a maximun length of 15 character. The second string has maximun
length of 30 pixels and also a comment.

The tagging works only on resource files for Symbian OS 6.1 or later. You can change
the tag strings. See online help to get more information.

Creating a New Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch Multilizer. Choose File | New from the main menu to start the Project
Wizard. The Target Type sheet appears. Press the Localize a File button. The File
Target sheet appears.

 Multilizer 5.1 - Developer’s Guide 121

Figure 112 The File Target sheet is used to specify the project file to be localized

This sheet specifies the file to be localized. Choose the
<multilizer>\Symbian\Samples\<sdk>\Tutorial subfolder. The Platform type should be
Symbian and the Target type should be Symbian project file. If they are wrong, check the
right types.

Press the Next button. The Symbian sheet appears:

Figure 113 The Symbian sheet is used to set the Symbian specific options.

This sheet specifies the Symbian SDK and other Symbian specific options. Selecting the
right Symbian SDK is important. If you have multiple Symbian SDKs installed on the
computer the list will have several items. Select the one that the project file (.mmp) you

122 Multilizer 5.1 - Developer’s Guide

selected uses. If the list does not have that SDK press Cancel, choose Tools | Options |
Symbian to add the SDK, and run Project Wizard again. To select the right native
language define refer the Conditional Compiling paragraph later on this chapter.

Accept the values by pressing the Next button. The Information sheet appears. This
sheet specifies the project name and other project related information. Accept the default
values by pressing the Next button. The Languages sheet appears. This sheet lets you
select the initial languages you would like to localize in the project. You only need to
select one or a few initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 114 English and Finnish added to project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

 Multilizer 5.1 - Developer’s Guide 123

Figure 115 The project grid

On the left side there is a tree view that contains the targets and the items they contains.
Our project contains one target, dcalc.mmp, and it contains two string tables, one dialog
and one menu. The first string table is a special one: it contains the application name to
be used in the AIF resource file and the installation name to be used in the package file.
To show only the string beloning to a specific item select the item in the tree. On the right
side there is the editing grid. It contains the native column and the English column. To
show another language select the language from the combo box above the grid.

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project, save it by choosing File | Save.

Create the localized resource files by choosing Project | Create Localized Files. This
creates the localized resource files (.rsc) in the language specific sub-directories (‘en’ and
‘fi’).

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run. This will upload the localized resource file to the Symbian
emulator and launches the emulator.

After the emulator appears, press the Dcalc icon to start the application. The localized
Dcalc appears.

124 Multilizer 5.1 - Developer’s Guide

Figure 116 Dcalc application with a Finnish user interface

For more information about translating a project with Multilizer, see the Translator’s
Manual.

Deploying
Symbian applications are deployed using installation files (.sis). It is a binary file
containing the application files and the resource files. The installation package can
contain resource files in several languages. To create an installation file you have to first
write a package file.

Multilizer creates a skeleton package file for you. The name of the skeleton package file
equals to the Symbain project file (.mmp) but it has .pkg.ml extension. To take the
package file in use remove the .ml extension from the file, add the missing parts and
finally run makesis tool to create the .sis file.

When scanning a Symbian project file Multilizer adds an application name string to the
Multilizer project. The string is "<filename> application" where filename is the file name of
the Symbian project file without extension (e.g. Dcalc.mmp -> "Dcalc application"). This
string is the installation name. Multilizer writes its translations to the package file.

The following package file is for Dcalc.
&AM,FI
#{"Dcalc application", "Dcalc-ohjelma"},(0x10008ace),1,0,0,TYPE=SUSAPP
"Dcalc.app"-"!:\system\apps\Dcalc\Dcalc.app"
{
"en\Dcalc.rsc"
"fi\Dcalc.rsc"
}-"!:\system\apps\Dcalc\Dcalc.rsc"

 Multilizer 5.1 - Developer’s Guide 125

The file contains two languages: English and Finnish. The English installation name is
"Dcalc application" and the Finnish one is "Dcalc.ohjelma". The English resource file is
en\Dcalc.rsc, the Finnish one is fi\Dcalc.rsc.

The default English country in Multilizer is United States. If you add a country neutral
language to the Multilizer project (e.g. English) Multilizer uses the Symbian installation
language code of English (United States) that is "AM". In order to use "EN" add English
(United Kingdom) to the Multilizer project.

Multilizer creates a skeleton package file only if you have specified a Symbian project file
(.mmp) to be localized. If you specify a Symbian resource file (.rss) you have to create
the package file yourself.

Conditional Compiling
Symbian SDK documentation engourages to use conditional compiling when localizing
resource files. The active language is specified by defining a define that enables
language related sections. The following sample code contains three languages: English
(US), English (UK), and Finnish.
#ifdef defined LANGUAGE_01
 LBUF { txt="Localise"; },
#elif defined LANGUAGE_09
 LBUF { txt="Lokalisoi"; },
#elif defined LANGUAGE_10
 LBUF { txt="Localize"; },
#endif

By defining LANGUAGE_01 the resource file will be in English (United Kingdom). By
defining LANGUAGE_09 the resource file will be in Finnish. By defining LANGUAGE_10 the
resource file will be in English (United States).

Similary the .mmp file contains the lang statement.
lang 01 09 10

When compiling the project the resource file will be compiled once for each language.
The resource will be three resource files each having different file extension (.r01, .r09,
.r10).

Some resource files use different approach. They do not write any strings to the .rss file
but use constant defines instead that are locating in the language files (.l??).
#ifdef LANGUAGE_01
 #include "Language.l01"
#endif
#ifdef LANGUAGE_09
 #include "Language.l09"
#endif
#ifdef LANGUAGE_10
 #include "Language.l10"
#endif

…

 LBUF { txt=LANG_TXT; },

Each Language.l?? file contains string defines that hold the actual strings. For example
Language.l01 would be:
#define LANG_TXT "Localise"

This is very compilicated. You have to resource strings twice. First you have to resource
strings from the source code to the resource files (.rss) and then from the resource file
to the language files (.l??). Moreover, you loose the string context when you move it
from its location in the .rss file to the define in the .l?? file. The developer does not see
the actual string by viewing LBUF { txt=LANG_TXT; } code. Instead he or she have
to open Language.l01 file, search for LANG_TXT, and only after that he or she will see
the actual string. Updating resource files containing conditional compiling is hard, slow
and error prone.

126 Multilizer 5.1 - Developer’s Guide

Multilizer makes this all much easier. When writing Symbian resource files you do not
have to use any conditional language defines, language file, or lang statements but write
resource files using only one language (e.g. English). When building Multilizer creates the
localized files for you. This makes the original resource files much easier to maintain.
There is no translation data in the resource file – only the original resource data. Also
there is not risk that your translator will accidently corrupt the resource file. The previous
resource example code will be much more simpler.
 LBUF { txt="Localize"; },

If you still use conditional compiling Multilizer tries to detect the defines used by the
resource file. Select the define that you want to use. If not present type the define. Use
Project | Targets dialog to edit the define of the target. This makes it possible for your to
select the native language.

If you have previously used the conditional compiling to localize you application switching
to Multilizer is very easy. All you have to do is to create a Multilizer project. When creating
the project the following message box will appear.

Figure 117 A message box that shows that there are existing translations.

Press Yes to import the initial languages and translations from a resource file using thr
conditional compiling. From now on you do not have to use conditional compiling any
more. You can delete the loc files and start hard coding the string into the resource files
(.rss).

 Multilizer 5.1 - Developer’s Guide 127

14
Palm

In this tutorial we are going to create a localized Palm application. The application will be
a simple driving-time calculator, Dcalc, which a user can use to calculate the average
driving time for a given distance.

The Dcalc application is very simple but nevertheless uses most Multilizer features. The
creation of the application is divided into several lessons, each covering one or more
Multilizer functions.

Palm Localization
Palm applications contain the resource data in the application files (.prc). Multilizer
creates the localized application files from the original application file. The following
picture describes the Palm localization process.

Application
Native resources

Application
French resources

Application
German resources

Application
English resources

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

Figure 118 Palm localization process

The process of localizing a Palm application can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the original application file.
Multilizer saves these strings into the project file.

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

3. The programmer uses Multilizer or Builder to create the localized application files.

The above will result in one application file for each language and one localized overlay
file for each localized language.

The following figure shows the files that Multilizer uses in the Palm localization process.

sample.prc sample.mpr en/sample.prc
de/sample.prc
fr/sample.prc

1 2
Application file Project file Localized application files

en/sample_enUS.oprc
de/sample_deDE.oprc
fr/sample_frFR.oprc

Figure 119 The files of the Palm localization process

128 Multilizer 5.1 - Developer’s Guide

To use a localized application, upload the localized application file (e.g.
de/sample.prc) instead of the original application file (sample.prc) to the Palm
device, or upload the original application file (sample.prc) and the overlay file
(de/sample_deDE.oprc) to the Palm device.

In order to run the application Multilizer needs to know the location of the Palm emulator
or simulator. The emulator can be used to test Palm application up to OS version 4. The
simulator can be used to test any Palm application. By default Multilizer tries to find the
emulator in its default installation directory. The location of the simulator can not be
detected. You must manually set it. To check or change Palm settings, launch Multilizer
and choose the Tools | Options | Palm menu. The following dialog box appears:

Figure 120 The Palm options dialog box

If the emulator or simulator edit boxes are empty press the Default button. If they are still
empty press the … button to set the paths manually. Press Help to get more information
about Palm options.

Application With An English User Interface
We could start from scratch but in most cases it is a completed application or at least an
application under development that you want to globalize. In this example an example
application shipped with Multilizer is used. The Palm\Samples\Tutorial contains the
English Dcalc. Open it, compile it, and finally run it.

The application should look like this:

 Multilizer 5.1 - Developer’s Guide 129

Figure 121 An English Palm application

The user interface language is English. In the following chapters we will localize Dcalc
step-by-step.

Internationalization
Internationalization is the process of generalizing a product so that it can handle multiple
languages and cultural conventions without the need for re-design; re-engineering source
code so that products and applications are compatible with country-specific operating
systems and software. Internationalization (I18N) takes place at the level of program
design and document development. I18N is defined as the set of processes, tools, coding
techniques and procedures used to write a software program that supports all of the
language requirements and country conventions of all of the countries where the SW
program will be used. For instance, writing an I18N ready application that supports the
writing systems for Japan and English, including the special sorting for the different
alphabets. The user interface of an I18N ready application is still in English, but the base
code supports the language requirements for both languages.

Apart from general considerations about I18N processes there are some specific
requirements for Palm applications to be localized correctly. For a correct and complete
I18N of Palm applications all the localizable resources will have to be placed in an
external resource file (.rsrc) that will be eventually compiled and linked to the final .prc file
(Palm executable).

All strings that are “hard coded” into the code section of the application will not be
extracted and therefore not localized. In order for the strings to be localized they must be
outside your source code.

Multilizer will scan and localize the following resources:

• tFRM, form resources

• Talt, alert dialog boxes resources

• tSTR, single string resources

• tSTL, string list resources

• tAIN, application icon name resources

• tAIS, application info string list resources

• MBAR, menu resources

130 Multilizer 5.1 - Developer’s Guide

• tver, version string resources

Multilizer will not scan user-defined resources, so if you want to ensure maximum
compatibility with the I18N process you should use tSTR and tSTL to store the strings
used by your application.

If the application has been developed using J2ME (Java to Micro Edition) then you should
localize it using Multilizer’s Java support and not Multilizer’s Palm support. The reason is
because even though the compiled file is a prc file the resources are not all of the types
defined above and therefore not all the strings contained in the application will be
reported correctly.

Developers who are aiming at a fully localizable Palm application should be aware of the
limitations of the translation process, being the source of a compiled application. If you
want to make sure that your application’s characters can be displayed fully also in other
languages you should think in advance about some extra space in forms’ components.
For instance button should, as a rule of thumb, have space to accommodate a text twice
as large the one you have in the native version. Using this approach, at design time, will
ensure a certain freedom to the translator and reduce the possibilities of having to
redesign the visual components to fit new strings. Also the positioning of the components
in forms should be considered as important. Text labels, for instance, will resize correctly
when translated but if two labels are placed one after the other in a form then there is
always the chance of the two of them overlapping which will result in hidden text.

Another possible cause of hidden text might come from string lists and combo boxes in
the case when the length of the combo box is enough to show only the largest of the
native strings in the list. During translation it is most likely that some strings will be shorter
but also that some will be longer and if such is the case then the combo box will not be
showing those strings in full. Also in this case it is advisable, when possible, to have
some extra space in the combo box to fit possibly larger texts.

Menus should not be of concern because Multilizer will recalculate the menu items sizes
during the localization process resulting in correct resizing and repositioning.

Creating a Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

 Multilizer 5.1 - Developer’s Guide 131

Figure 122 The File Target sheet is used to specify the file to be localized

This sheet specifies the location of your application. Choose the
<mldir>\Palm\Samples\Tutorial subfolder of your Multilizer setup. Project Wizard
detects the platform and project types. The Platform type should be Palm and the Target
type should be Palm application file. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

132 Multilizer 5.1 - Developer’s Guide

Figure 123 English and Finnish added to project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

Figure 124 The project grid

 Multilizer 5.1 - Developer’s Guide 133

On the left side there is a tree view that contains the targets and the items they contains.
Our project contains one target, mldemo.prc, and it contains one form, several dialogs,
one string table, one menu and one accelerator table. To show only the string beloning to
a specific item select the item in the tree. On the right side there is the editing grid. It
contains the native column and the English column. To show another language select the
language from the combo box above the grid.

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project, save it by choosing File | Save.

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized application files (.prc) in the language specific sub-directories (‘en’
and ‘fi’).

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and choosing Run. This will upload the localized resource file to the Palm
emulator, launches the emulator and finally starts the application.

Figure 125 Localized Dcalc application

PalmOS 3.0 or later support overlays. They are PRC files that contain only resources.
You deploy the overlay with the application PRC file. By default Multilizer creates the
localized application files and the overlay files. To change the settings select
mldemo.prc from the left side tree view and right-click to open the popup menu. Choose
Edit target to open the Palm Binary File Target dialog.

134 Multilizer 5.1 - Developer’s Guide

Figure 126 The Palm Binary File Target dialog

Select the Localization sheet and uncheck the Localized files check box. Next time you
build the localized files Multilizer will not create the localized files, only the overlay files.

If you have configured both the Palm emulator and simulator, Multilizer will use the
simulator. You can force it to use the emulator by selecting the Preferences sheet and
checking the Use emulator when both emulator and simulator exist check box.

For more information about translating a project with Multilizer, see the Translator’s
Manual.

 Multilizer 5.1 - Developer’s Guide 135

15
XML

In this tutorial we are going to localize XML files. The file will be a simple product catalog,
which contains consumer products.

XML Localization
XML file contains data. Multilizer creates the localized XML files from the original XML
source file. The following picture describes the XML localization process.

Native file French file
German file

English file

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilingual file

or

Figure 127 XML localization process

The process of localizing XML files can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the XML file. Multilizer
saves these strings into the project file (.mpr).

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

3. The programmer uses Multilizer or Builder to create the localized XML files.

The above will result in one XML file for every language. The structure of the localized file
is identical to the original one. The only difference is that the selected string data has
been translated to the target language. Multilizer cam create one XML file that contains
selected tags in several languages.

The following figure shows the files that Multilizer uses in the XML localization process.

sample.xml sample.mpr en/sample.xml
de/sample.xml
fr/sample.xml

1 2
XML file Project file Localized XML files

Figure 128 XML localization process files

To use the new localized resource (e.g. de/sample.xml), deploy or use it instead of the
original XML file (sample.xml).

136 Multilizer 5.1 - Developer’s Guide

English File
The <mldir>\Data\Samples\XML\Tutorial contains the English XML file. It is a
simple product catalog file that contains three products. Each product has a name, a price
and a description.
<?xml version="1.0" encoding="UTF-8"?>
<PRODUCTS>
 <PRODUCT Id="0">
 <NAME>Nokia 9210</NAME>
 <PRICE>800</PRICE>
 <DESCRIPTION>The third generation communicator having a color
display, Symbian operating system and Java</DESCRIPTION>
 </PRODUCT>

 <PRODUCT Id="1">
 <NAME>Fiskars Handy</NAME>
 <PRICE>39</PRICE>
 <DESCRIPTION>This ax has fiber class arm that is virtual
unbreakable</DESCRIPTION>
 </PRODUCT>

 <PRODUCT Id="2">
 <NAME>Polar M52</NAME>
 <PRICE>129</PRICE>
 <DESCRIPTION>A heart rate meter that has a build in fitness
test</DESCRIPTION>
 </PRODUCT>
</PRODUCTS>

The DESCRIPTION tag contains English text that needs to be localized.

Creating a New Project
Double-click the Multilizer icon from the Multilizer program group to launch Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button.

Figure 129 The File Target sheet is used to specify the XML file to be localized.

 Multilizer 5.1 - Developer’s Guide 137

This dialog specifies the directory where your application is located. Choose the
<multilizer>\Data\Samples\XML\Tutorial subfolder of your Multilizer setup. Project Wizard
detects the platform and project types. The Platform type should be Data and the Target
type should be XML file. If they are wrong, check the right types.

Press the Next button. The XML sheet appears:

Figure 130 The XML sheet is used to select the tags to be localized.

This sheet specifies the tags that will be localized. Open the tree and double click the
DESCRIPTION leaf. A green check marks appears. This makes Multilizer to localize all
DESCRIPTION blocks that belong to the PRODUCT block that belongs to the
PRODUCTS block. Double click the DESCRIPTION node to check it.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Press the Next button. The Languages sheet
appears. This sheet lets you select the initial languages you would like to localize in the
project. You only need to select one or a few initial languages, as you can always add
more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

138 Multilizer 5.1 - Developer’s Guide

Figure 131 English and Finnish added to a project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

Figure 132 The project grid

Save the project by choosing File | Save.

 Multilizer 5.1 - Developer’s Guide 139

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project save it by choosing File | Save.

Create the localized XML files by choosing Project | Create Localized Files. This
creates the localized XML files in the language specific sub directories (e.g.
‘en\sample.xml’ and ‘fi\sample.xml’).

For example the Finnish XML file (fi\sample.xml) would look like this.
<?xml version="1.0" encoding="UTF-8"?>
<PRODUCTS>
 <PRODUCT Id="0">
 <NAME>Nokia 9210</NAME>
 <PRICE>800</PRICE>
 <DESCRIPTION>Kolmannen sukupolven kommunikaattori, jossa on
värinäyttö, Symbian-käyttöjärjestelmä ja Java</DESCRIPTION>
 </PRODUCT>
 <PRODUCT Id="1">
 <NAME>Fiskars Handy</NAME>
 <PRICE>39</PRICE>
 <DESCRIPTION>Lasikuituvartinen kirves, joka on käytännössä
rikkoutumaton</DESCRIPTION>
 </PRODUCT>
 <PRODUCT Id="2">
 <NAME>Polar M52</NAME>
 <PRICE>129</PRICE>
 <DESCRIPTION>Sykemittari, jossa on kuntotesti</DESCRIPTION>
 </PRODUCT>
</PRODUCTS>

The structure is identical to the native (English) one but the DESCRIPTION block has
been translated to Finnish.

Multilizer makes it possible to create multilingual XML files as well. Choose Project |
Targets. Select the XML file and press Edit. The XML File Target dialog appers. Check
the Multilingual file in the Preferences sheet.

140 Multilizer 5.1 - Developer’s Guide

Figure 133 XML File Target dialog

Next time you create the localized files Multilizer will create a multilingual XML file in the
all subdirectory (e.g. all\sample.xml).
<?xml version="1.0" encoding="UTF-8"?>
<PRODUCTS>
 <PRODUCT Id="0">
 <NAME>Nokia 9210</NAME>
 <PRICE>800</PRICE>
 <DESCRIPTION>The third generation communicator having a color
display, EPOC operating system and Java</DESCRIPTION>
 <DESCRIPTION xml:lang="en">The third generation communicator having a
color display, EPOC operating system and Java</DESCRIPTION>
 <DESCRIPTION xml:lang="fi">Kolmannen sukupolven kommunikaattori, jossa
on värinäyttö, EPOC-käyttöjärjestelmä ja Java</DESCRIPTION></PRODUCT>

 <PRODUCT Id="1">
 <NAME>Fiskars Handy</NAME>
 <PRICE>39</PRICE>
 <DESCRIPTION>This ax has fiber class arm that is virtual
unbreakable</DESCRIPTION>
 <DESCRIPTION xml:lang="en">This ax has fiber class arm that is
virtual unbreakable</DESCRIPTION>
 <DESCRIPTION xml:lang="fi">Lasikuituvartinen kirves, joka on
käytännössä rikkoutumaton</DESCRIPTION></PRODUCT>

 <PRODUCT Id="2">
 <NAME>Polar M52</NAME>
 <PRICE>129</PRICE>
 <DESCRIPTION>A heart rate meter that has a build in fitness
test</DESCRIPTION>
 <DESCRIPTION xml:lang="en">A heart rate meter that has a build in
fitness test</DESCRIPTION>
 <DESCRIPTION xml:lang="fi">Sykemittari, jossa on
kuntotesti</DESCRIPTION></PRODUCT>
</PRODUCTS>

 Multilizer 5.1 - Developer’s Guide 141

The structure is identical to the native (English) one but there is one DESCRIPTION block
for each language. Each added and localized tag also contains the XML language
attribute (xml:lang).

142 Multilizer 5.1 - Developer’s Guide

16
WAP

In this tutorial we are going to create a localized WAP application that consists of one wml
file and one wmls file. WML is a markup language based on Extensible Markup Language
(XML). It is designed to be used to specify application content for devices like mobile
phones. This content can be represented with text, images, selection lists, etc. Simple
formatting is also supported. This content, however, is all static and there is no way of
modifying this without modifying wml itself. WMLScript (WMLS) was designed to
overcome these limitations and to provide programmable functionality that can be used
over narrowband communication links in clients with limited capabilities. The application
will be a simple driving-time calculator, Dcalc that a user can use to calculate the average
driving time for a given distance. The dcalc WAP-application is relatively simple, but still it
uses most features of Multilizer. The creation of the application is divided into several
lessons, each covering one or more Multilizer functions.

WAP Localization
The wml files contain language data in specific places, i.e. inside tags after type
definitions that determine whether the string will be a title, label or something different.
Multilizer can find all the localizable strings from the wml files after which it extracts them
and places the strings to the Multilizer project file.

Native file

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

French file
German file

English file

Figure 134 The WML localization process

The process of localizing WML files can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the WML file. Multilizer
saves these strings into the project file (.mpr).

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

3. The programmer uses Multilizer or Builder to create the localized WML files.

The above will result in one WML file for every language. The structure of the localized
file is identical to the original one. The only difference is that the selected string data have
been translated to the target language.

The following figure shows the files that Multilizer uses in the WML localization process.

 Multilizer 5.1 - Developer’s Guide 143

sample.wml sample.mpr en/sample.wml
de/sample.wml
fr/sample.wml

1 2
WML file Project file Localized WML files

Figure 135 The files of the WML localization process

Most WAP applications use a template or scripting technology to create WML files
dynamically at run-time. You can use the above localization process for XSL, JSP and
ASP files.

Application with an English User Interface
We could start from scratch but in most cases it is a completed application or at least
some specific application under construction that you want to globalize. This is what we
are going to do. The <mldir>\WML\Samples\Tutorial\dcalc.wml contains the
Dcalc sample application for WAP. Compile and run the application.

Figure 136 Dcalc driving time calculator with English user interface

The user interface language is English. In the following chapters we will localize the wml
source code of the Dcalc application step-by-step.

144 Multilizer 5.1 - Developer’s Guide

Internationalization
Internationalization is the process of generalizing a product so that it can handle multiple
languages and cultural conventions without the need for re-design; re-engineering source
code so that products and applications are compatible with country-specific operating
systems and software. Internationalization (I18N) takes place at the level of program
design and document development. I18N is defined as the set of processes, tools, coding
techniques and procedures used to write a software program that supports all language
requirements and country conventions of all countries where the application will be used.
For instance, writing an I18N ready application that supports the writing systems for
Japan and English, including the special sorting for the different alphabets. The user
interface of an I18N ready application is still in English, but the base code supports the
language requirements of both languages.

When writing code that can be easily localized later on, i.e. internationalization, the
following things should be taken into consideration with wml pages:

• Having the right character set in the wml document, i.e. document’s character set
has to correspond to the actual language used in the document. For example
with Western languages it can be either ISO-8859-1 or UTF-8, but for example
with Japanese it is SHIFT-JIS or UTF-8. The setting is in the beginning of the
document: e.g. “<?xml version="1.0" encoding="ISO-8859-1"?>”. You can check
all existing character sets from http://www.czyborra.com/charsets/. UTF-8 works
as a character set with all languages.

• Language has to be separately categorized in the wml document; e.g.<wml
xml:lang="fi"> for Finnish or <wml xml:lang="en"> for English.

• User interface limitations are especially important to take into consideration in the
sense that the displays that are used to read wml pages are usually very small.
String lengths have to be checked with emulators or with actual equipment to see
how everything fits in to the displays of different equipment.

• In WML the user interface and in WML Scripting the data input for example have
to be taken into consideration. The normal country specific things, i.e. the user
interface must support multiple different countries’ cultures and settings.
Internationalizing WAP code is getting more and more popular as the popularity
of WAP grows.

Creating a New Project
We have now internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

http://www.czyborra.com/charsets/

 Multilizer 5.1 - Developer’s Guide 145

Figure 137 The File Target sheet is used to specify the WML files.

This dialog specifies the directory where your application is located. Choose the
<multilizer>\WML\Samples\Tutorial subfolder. Project Wizard detects the platform and
target types. The Platform type should be Internet and the Target type should be WML
files. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

146 Multilizer 5.1 - Developer’s Guide

Figure 191 English and Finnish added to the project

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

Figure 138 The project grid

Save the project before moving on by choosing File | Save As.

 Multilizer 5.1 - Developer’s Guide 147

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project, save it by choosing File | Save.

Create the localized application files by choosing Project | Create Localized Files. This
creates the localized application files (.wml) in the language specific sub directories (‘en’
and ‘fi’).

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run.

Figure 139 Localized Dcalc application

The Finnish WML file (fi\dcalc.wml) would look like this.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="main" title="Dcalc" newcontext="true">
 <p>
 Etäisyys:
 <input format="N*M" name="distance" value="150" title="Etäisyys:"/>
 Nopeus:
 <input format="N*M" name="speed" value="100" title="Nopeus:"/>

 =
 <u>$(hours) tuntia $(minutes) min.</u>
 </p>
 <do type="accept" label="Laske">

148 Multilizer 5.1 - Developer’s Guide

 <go href="dcalc.wmls#calculate('hours', 'minutes', '$(distance)',
'$(speed)')"/>
 </do>
 <do type="help" label="Ohje">
 <go href="#about"/>
 </do>
 </card>
 <card id="about" title="Tietoa Dcalc:sta">
 <p>Dcalc is ohjelma, joka laskee keskimääräisen ajoajan.</p>
 <do type="prev" label="Takaisin">
 <prev/>
 </do>
 </card>
</wml>

The structure is identical to the native (English) one but strings have been translated to
Finnish and file uses UTF-8 character set.

 Multilizer 5.1 - Developer’s Guide 149

17
Database

In this tutorial we are going to localize database contents. Databases in this tutorial are
simple catalogs that contain consumer products.

Multilizer supports three different kinds of database localization. They are: fields
localization, tables localization and single table localization. The following chapters will
describe them in more detail.

General Considerations on Database Contents
Localization and Used Terminology
Before moving to the actual tutorials let’s read about issues related to databases in
general, issues such as security, architectures, existing localized data and a brief
description of the terminology used through this document including the description of
some icons used in Multilizer.
Security
Every Relational Database Management System (RDBMS) has built-in security features,
obviously to protect the data stored in the databases. If you are planning to localize the
contents of databases stored in such systems, it is necessary that you have the required
access rights to do so. When you use Multilizer as a database user, you should make
sure that you have SELECT, INSERT and UPDATE rights on the tables you want to
localize; otherwise the localization will not be possible.

Under some circumstances the database administrator might choose to create different
roles to the database according to the tasks of the user.

In your organization, for instance, there could be a user (or role) that has only SELECT
rights and another user (or role) that has SELECT, INSERT and UPDATE rights. In this
case the first user can use Multilizer to scan the database contents and create a new
Multilizer project while the second user can create the localized contents after the project
has been translated.

How you, or your database administrator, will share the tasks between different users is
up to your organization.

Data visibility is dependent also on RDBMS security that can vary from system to
system. On certain systems (such as Oracle), when using Multilizer, the first user might
not “see” the database tables whose owner is second user. In this case the first user,
when logging into the database from Multilizer, should use second user’s username (and
a dot) as a prefix to his/her username.

For instance, let’s suppose that first user’s name is “translator” and second user’s name
is “owner”. The first user wants to use Multilizer to scan the data contained in a database
created (or otherwise owned) by the second user. When the first user selects the
database to log into, he/she will use the username “owner.translator” and his/her own
password.

On some systems it might be enough to prefix the user name with the Schema
associated to the database tables.
Choosing the right connection type
Even though Multilizer supports ADO/ODBC and BDE compatible connections to remote
servers it is a better idea to choose the correct database server type before attempting to

150 Multilizer 5.1 - Developer’s Guide

connect. Multilizer will detect which client drivers are present in your system and offer you
choices accordingly. If the server type you want to connect to is listed in the
connection dialog drop-down list, please select it instead of ADO/ODBC or BDE
compatible.
Some servers are supported by other than ADO/ODBC or BDE and we strongly advice
not to use ADO/ODBC or BDE for the following:

• Oracle

• MySQL

• Interbase

• IBM DB/2

If these types are not listed in the Multilizer database connection dialog then you will need
to install the required vendor client drivers, usually supplied with your database software
distribution.
Architectures
As you will see in the following chapters, we have defined three specific database
architectures on which Multilizer can successfully localize data: fields, tables and single
table localization architectures. In fact, even though the requirements are quite different
for each of them (please refer to the next chapter), they can be easily mixed according to
your specific needs as a result of Multilizer’s great versatility.

Each one of them offers advantages and disadvantages compared to the remaining two.
The choice should be made based on how the database needs to be structured and
accessed, the data it will contain and of course if it has been already planned with the
localization process in mind or if you are trying to localize an existing database that was
not originally planned for localization.

Chapters 4, 5 and 6 offer more detailed views on these different architectures.
Existing Data
We at Multilizer have tried very hard to build a system that can preserve your existing
translations but still we suggest you to back up your database before proceeding
with the localization process.
The reason is that if you are not an experienced Multilizer user you might accidentally
overwrite your existing localized data by, for instance, selecting the wrong field when
creating a new project.

In general when Multilizer scans the tables for the first time (or after each rescan) it will
detect the data in the native fields, of course, but also in the localized ones so that any
existing data will be added to Multilizer’s localized columns (whether any data found will
replace the translations already existing in your Multilizer is an option in the target editor).

In order for the process to work correctly you need to instruct Multilizer on which table
and/or field contains the data for a certain language (please see chapters 7 to 9 on how
to do this).
Used Terminology & Icons
Through this document we will use the following terms:

Localizable Field or Table, a field or a table that will contain localized data but that is at
the moment empty

Localized Field or Table, a field or a table that contains localized data either as a result of
Multilizer use or in the case of existing data prior to Multilizer use.

 This icon represents the database. In the tree view it represents the root.

 Multilizer 5.1 - Developer’s Guide 151

 This icon represents a table. It may contain localized fields.

This icon represents a localizable table. It is nested within a table.

 This icon represents a field within a table. It may contain localizable fields.

This icon represents a localizable field. It is nested within a field.

This icon shows that a field has been tagged as localizable (for Single Table
localization).

This icon shows that a field has been selected as language id field (for Single Table
localization).

Field and Table Naming
Conventions and Restrictions
In order to facilitate the auto detection of localized fields and tables Multilizer is
suggesting a naming convention that, if followed, will make the localization process much
faster and easier.

Localized fields within the same table should use the following

Native field:

FieldName

Localized Fields:

FieldNameidID or FieldName_id_ID or FieldNameId_ID or FieldNameID

Where id and ID represent the language (ISO-369) and country (ISO-3166) codes. For
instance in a table containing a native field Description with two localized fields, one for
Finnish, the other for English, you may use the following:

Description, Description_Fi, Description_En

or

Description, DescriptionFi, DescriptionEn

or any other combination of the above as long as the FieldName section of the name is
maintained the same.

The naming convention for the localized tables is the same as for the fields except that
the convention now applies to tables’ names instead of the fields

Native table:

TableName

Localized Tables:

TableNameidID or TableName_id_ID or TableNameId_ID or TableNameID

Where id and ID represent the language (ISO-369) and country (ISO-3166) codes. For
instance in a database with a native table called Products and two localized tables, one
for Finnish the other for English, you may use the following:

Products, Products_Fi, Products_En

or

Products, ProductsFi, ProductsEn

152 Multilizer 5.1 - Developer’s Guide

In the case of tables localization, the field convention naming is mandatory and very
simple:

Even though the localized table may contain fewer fields than the native, every field
contained in the localized table must have the same name as the correspondent field in
the native table

Furthermore:
The localized tables and the native table must have the same primary key.

These rules are not as restrictive as they might seem and in fact they help in SQL code
as well because the selection of one or the other language is achieved easily by changing
only the table name in the queries and not the fields names.

In the above database example the fields in the native table (Products) could be as
follows:

Id, Name, Description, Code

and in the localized tables (ProductsFI and ProductsEn):

Id, Description

In case of a single table localization it is essential that the table contains one field
dedicated to the language id. Multilizer will use the ISO codes for the language (ISO-369)
and country (ISO-3166) combination for every RDBMS except Oracle where Oracle’s own
language/country codes are used instead. The name of the field can be chosen freely as
long as it is a string type and at least 5 characters long (except in Oracle where the
maximum length will probably be 3 characters).

So where Oracle will contain the code ‘US’ for English (United States) rows, all other
databases will contain ‘en_US’.

Fields Localization
Sometimes database fields contain information that needs to be localized. For example in
a product catalog, a description field may contain a short description about the product
that the record stores. The description strings need to be localized. The easiest way is to
add a new description field for each language. The following picture describes the field
localization process.

Field 1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project fileDatabase

table

French field

German field

English field

Field

Database
table

French field

German field

English field

Figure 140 The field localization process.

The database table in the above example contains one field that needs to be localized,
Description. Before you can localize the field you have to add the localizable fields into
the table. The table in the example above contains localizable fields for three languages:
DescriptionEn (English), DescriptionDe (German) and DescriptionFr (French),

The process of localizing table fields can be divided into 3 basic steps:

4. The programmer uses Multilizer to extract strings from the native field(s). Multilizer
saves these strings into the project file (.mpr).

 Multilizer 5.1 - Developer’s Guide 153

5. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

6. The programmer uses Multilizer or Builder to fill the localizable fields with the
localized data.

The following figure shows the items that Multilizer uses in the field localization process.

sample
- Description

sample.mpr sample
- DescriptionEn
- DescriptionDe
- DescriotionFr

1 2
Database table Project file Localized database fields

Figure 141 The items of the field localization process.

To use the new localized data replace the native field name (e.g. Description) with the
localized field name (e.g. DescriptionDe) in the SQL statement.

Examples
The following SQL statement selects the description field of the first row in the table
SELECT Description FROM sample WHERE Id=1

If the active language is German you need to change the statement so that DescriptionDe
is used instead of Description.
SELECT DescriptionDe FROM sample WHERE Id=1

A more generic way is to store the name of the description field into a resource string in
your application and use the localized resource (e.g. localized field name).

Then the SQL statement might be constructed like:
‘SELECT ‘ + LoadStr(Description) + ‘ FROM sample WHERE Id=1’

This gets the localized field name from the application resource. If the application
language is German the description resource contains “DecriptionDe”, if the language
is French the resource contains “DescriptionFr”.

The field localization method has quite minimal impact to your source code. The only
thing that you have to do is to select the right field name in the SQL statement.
Unfortunately you cannot always add new fields easily to database tables. Either the
insertion of the fields afterwards in impossible or the insertion would break the existing
code. In this case you can use the tables localization.

See the Field localization samples in the
<mldir>\Data\Samples\Databases\Field directory.

Tables Localization
In the tables localization architecture the situation is quite different from the fields
localization (see previous chapter). In this case we need not to worry about the final
number of languages that will be in our database because insertion of a new language is
(as we’ll see later on) much easier.

The basic principle of this architecture is to isolate all the localizable fields and create a
new localizable table for each language.

The localizable tables can be:

• Clones of the native table: each localized table will contain ALL the data
contained in the native with localized data instead of native

• Subsets of the native table: each localized table will contain ONLY the localized
fields data plus as many extra fields as those contained in the primary index of
the native table.

154 Multilizer 5.1 - Developer’s Guide

In both cases the localizable table MUST contain the localizable fields. The choice is
dependent on the data your database contains. If there is a large amount of data that
need not be localized and maybe requiring large amount of storage (like blobs) then the
obvious choice is to subset the translatable tables; in this way there is no unnecessary
data cloning. If these are no issues to be concerned with then cloning the tables will work
just the same.

The following picture describes the tables’ localization process.

Fields that need
to be localized 1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

French table

German table

English table
Native
table

French table

German table

English table

Figure 142 The tables localization process.

The table in the above example contains one field that needs to be localized. Before you
can localize the fields you have to create the localizable tables (English, German and
French) containing the fields that need to be localized plus an id field used as primary key
referencing the native table.

The tables can be empty only the structure needs to be defined, Multilizer will add the
rows to the localized tables during the localization process.

The process of localizing table fields can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the native field(s). Multilizer
saves these strings into the project file (.mpr).

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

3. The programmer uses Multilizer or Builder to fill the localized tables.

The following figure shows the items that Multilizer uses in the field localization process.

sample sample.mpr sample_en
sample_de
sample_fr

1 2
Database table Project file Localized database tables

Figure 143 The items of the tables localization process.

To use the new localized data replace the native table name (e.g. sample) with the
localized table name (e.g. sample_de) in the SQL statement.
Examples
The following SQL statement selects the description field from the native table.
SELECT Description FROM sample WHERE Id=1

If the active language is German you need to change the statement so that the table
sample_de is used instead of sample.
SELECT Description FROM sample_de WHERE Id=1

Obviously such a simple statement is not that useful, in real situations you might have
something like:

 Multilizer 5.1 - Developer’s Guide 155

SELECT sample.Price, sample_de.Description FROM sample, sample_de WHERE
sample.Id = 1 AND sample_de.Id = sample.Id

And if your RDBMS supports the JOIN clause most likely you will use something like:
SELECT sample.Price, sample_de.Description FROM sample JOIN sample_de ON
sample_de.Id = sample.Id

The above examples might clarify as well why one of the requirements is that the primary
keys in the native and localizable tables have to be the same.

See the Tables localization samples in the
<mldir>\Data\Samples\Databases\Tables directory.

Single Table Localization
Again, this architecture differs from the previous two enough to deserve a chapter on its
own.

Even though tables localization is rather effective it might be problematic to adjust
existing code to use the newly created localized tables. An answer to this problem comes
from what we call “Single Table” localization. The name is a bit of a misnomer and might
lead to the wrong conclusion that only one table can be localized. In fact it is not at all so.
What we refer to is a single table containing ALL the data: native and localized.

Some planning is required to be able to insert the localized data in such a table. The first
and most obvious addition is that we need to have a primary key containing at least two
fields, one for the language id and one for the string id (or whatever field would be unique
within a set of row of the same language).

In other words each row in the table is identified uniquely by the combination of the
language id and the string id (please look at the examples at the and of the chapter for
more information).

The following picture describes the single table localization process.

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

French rows

German rows

English rows

Native
table

Native
table
Native rowsNative rows:

fields that need
to be localized

Figure 144 The single table localization process.

The table in the above example contains one field that needs to be localized. One field is
required for the language data and one is for the string id.

The process of localizing fields within a single table can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the native field(s). Multilizer
saves these strings into the project file (.mpr).

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

3. The programmer uses Multilizer or Builder to fill the table with the localized data.

The following figure shows the items that Multilizer uses in the single table localization
process.

156 Multilizer 5.1 - Developer’s Guide

sample sample.mpr sample1 2
Database table Project file Localized database table

Figure 145. The items of the single table localization process.

To use the new localized data pass the required value for the language id field in the SQL
statements.
Examples
The following SQL statement selects the native description field from the table. In our
example English is the native language
SELECT Description FROM sample WHERE Id=1 AND languageId=’en’

If the active language is German you need to change the statement in such way that the
languageId will have to contain the new locale value
SELECT Description FROM sample WHERE Id=1 AND languageId=’de’

Oracle users will probably be more familiar with Oracle’s language/country codes. In
Oracle’s systems the above statements would probably be
SELECT Description FROM sample WHERE Id=1 AND languageId=’GB’

and
SELECT Description FROM sample WHERE Id=1 AND languageId=’DE’

See the Single Table localization samples in the
<mldir>\Data\Samples\Databases\Single directory.

Creating a New Project with Localized Fields
The <mldir>\Data\Samples\Database\Field\Product contains a database with
localized fields

Figure 146 The table containing the native and localized fields

As you can see two fields, Description_en and Description_fi, have been added to our
original Product table. These fields are of the same type and size of the native field
Description and currently contain no data.

Double click the Multilizer icon from the Multilizer program group to start Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a Database button. The Database sheet appears.
This sheet is used to select the database type, the connection string and the fields and/or
tables to be scanned and localized.

Set database type to Any ADO/ODBC compatible. Press the … button. The Data Link
Properties dialog box appears. Select Microsoft Jet 4.0 OLE DB Provider. Press the Next
button. Press the … button. Choose the
<mldir>\Data\Samples\Database\Field\sample.mdb database file. Press OK.
Press the Connect button. Multilizer will detect those fields that can be localized and will
try to detect the correct languages according to the names suffices. The Database sheet
should look like this.

 Multilizer 5.1 - Developer’s Guide 157

Figure 147. The Database sheet is used to specify the database, tables and files.

Our sample database contains a table with localizable fields. Multilizer will nest the
localizable fields within the native fields in the tables that contain them.

The auto-detection will not work if the fields and/or table names follow a different naming
convention than the one suggested by Multilizer (please refer to chapter 3). In this case
you can manually drag fields and/or tables within other fields or tables though the
language might still remain undetected. To set the correct language for the localized field
(or table), select the item you are interested in and right click on it. A sub menu appears
with the current language selection from which you can choose.

Press the Next button, the Languages sheet appears. It lets you add string languages to
the project. From Available languages select English and drag the item to the Selected
languages list box or press the >> button. This adds English to the project.

Add some other European language. If you add Finnish the result should look like this:

158 Multilizer 5.1 - Developer’s Guide

Figure 148. English and Finnish added to project.

When you are satisfied with the fields and language selection click Next and the targets
sheet appears. This sheet lets you add more files to be localized. We do not want to add
any more files. Press the Next button. The Project Information sheet appears. This sheet
specifies the project name and other project related information. Accept the default values
by pressing the Next button. The Finish sheet appears. Press the Finish button to finish
the Project Wizard. The following project grid appears.

Figure 149 The project grid.

Save the project by choosing File | Save.

 Multilizer 5.1 - Developer’s Guide 159

Creating a New Project with Localized Tables
The <mldir>\Data\Samples\Database\Tables\Product contains the database
with localized tables.

Figure 150 The native and localized tables

In this case two tables, ProductEn and ProductFi, have been added to our original
database. These tables contain a primary key (Id) and a Description field of the same
type and size as the Description field in the Product table (please refer to Chapter 3 for
more information on naming conventions). Obviously they are empty, ready to be
localized.

Creating a project with localized tables is very similar to creating a projec twith localized
fields. The only difference is the Database sheet after connection.

Figure 151 Tables and fields in the database.

Our sample database contains a table with localizable fields. Multilizer will nest the
localizable fields within the native fields in the tables that contain them.

The auto-detection will not work if the fields and/or table names follow a different naming
convention than the one suggested by Multilizer (please refer to chapter 3). In this case
you can manually drag fields and/or tables within other fields or tables though the
language might still remain undetected. To set the correct language for the localized field

160 Multilizer 5.1 - Developer’s Guide

(or table), select the item you are interested in and right click on it. A sub menu appears
with the current language selection from which you can choose.

Creating a New Project with a Single Table
The <mldir>\Data\Samples\Database\SingleTable\Product contains the
database with a native table.

Figure 152 A single table containing native rows

In this case one extra field, LanguageId, has been added to the table. The table primary
key contains now two fields: Id and LanguageId.

Creating a project with localized tables is very similar to creating a projec twith localized
fields. The only difference is the Database sheet after connection.

Figure 153 Tables and fields in the database

We need to tag the field Description as localizable and LanguageId as our language id
field.

To tag the field Description as localizable, select it in the tree and then right-click with
your mouse, a menu will popup with two items, Localizable Field and Language Id Field.

 Multilizer 5.1 - Developer’s Guide 161

Figure 154 The popup menu for selecting fields

Now click Localizable Field. Now the icon of the Description field has changed into a
green check mark.

To select the field LanguageId as language id, select it in the tree and then right-click with
your mouse, the same menu will popup, this time click the Language Id Field. Now the
icon of the LanguageId field has changed into a hand pointer.

Figure 155 Selected fields and language id for localization

Now Multilizer will know which field to scan (Description) and which field in the table
contains the language id field (LanguageId).

162 Multilizer 5.1 - Developer’s Guide

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project save it by choosing File | Save.

Create the localized database files by choosing Project | Create Localized Files. This
will write the localized rows to the tables according to the type of project (field and/or table
localization).

 Multilizer 5.1 - Developer’s Guide 163

18
Oracle® Forms

In this tutorial we are going to localize a simple Oracle Forms application. The application
is not connected to any database because it is for demonstrative purposes only but this
will not affect at all the localization process.

Main differences between Oracle Translation
Manager/Builder and Multilizer
Before moving to the actual tutorials let’s read about issues related to the differences
between the tools supplied with Oracle and Multilizer. This is important in order to fully
understand what Multilizer does to your forms files or how it can reuse the translations
you have previously created with OTM. Furthermore, we will address also issues like the
translation of object libraries and PL/SQL source code.

Once the differences are clear then the migration to Multilizer will be more transparent
and easy.

Choosing the right native language
If your native form has been previously localized using OTM you should make sure that
your NLS_LANG environmental variable is set to the correct value before scanning it with
Multilizer. Multilizer relies on Oracle Forms API for certain functionalities and the
NLS_LANG settings will determine the language that Multilizer will scan as native. In
other words if you have an English application that has been localized to Italian and your
NLS_LANG is set to Italian then Multilizer will present you with the Italian strings as native
even though you would consider English as the native language of the application. So, in
order to make sure that the correct native is displayed please check your NLS_LANG
settings.

How Multilizer localizes fmb files
Unlike OTM, Multilizer creates a copy of each fmb file in your project into the localized
directory. This means that after having localized a form file, the settings of the
NLS_LANG variable will not affect anymore the language displayed in the localized
forms. This might seem like a waste of space but it has advantages especially if your
application uses object libraries. When you localize a form that contains object libraries
Multilizer will localize every item in your form and store it in a copy into the localized
subdirectory and finally compile the file for immediate use. If you change, at a later time,
the object library of your native application, all you need to do is a rescan of the native
forms and, after saving the project, all your changes will be stored in the new localized
forms without any loss of previous translations.

This removes also the necessity to localize the object libraries separately.

After localizing a form with Multilizer you should not reopen it using the Form
Builder because you might end up loosing your translations especially if you are
using olb files.

Multilizer project versus Oracle Translation Manager/Builder
database
Multilizer stores the translations in projects and in order to guarantee reusability the same
translations are also stored in its translation memory. When you import a previously

164 Multilizer 5.1 - Developer’s Guide

created OTM database into Multilizer’s translation memory, all the strings that are
imported are available to be reused in every new project you create with Multilizer.
Duplicated native-translation pairs are not stored into the translation memory because
there is no necessity to do so. On the other hand every new translation you create using
Multilizer will be reusable in other projects too. Later on in this chapter we will see how to
import your existing data from an OTM database into Multilizer’s translation memory.

PL/SQL code localization
Multilizer can localize your PL/SQL code. Currently functions that accept one string
parameter can be localized. The advantages are evident if you need to localize an
application that contains, for instance, several calls to a function to display some
message, for instance the function Message.

By instructing Multilizer to scan the Message function you will be able to localize the
parameter passed to it exactly in the same way in which you localize any of the visible
components in the form.

We will see later in the tutorial how to set Multilizer to scan PL/SQL code.

Oracle Forms Localization
Oracles Forms applications contain the localizable data in the application file (e.g. .fmb).
Multilizer creates the localized application files from the original file. The following picture
describes the binary localization process.

Application
NativeForms and
Menus files
(fmb & mmb)

Application
French Forms and
Menus files (fmb & mmb)

Application
German Forms and
Menus files (fmb & mmb)

Application
English Forms and
Menus files (fmb & mmb)

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

French fmx & mmx
German fmx & mmx

English fmx & mmx

and

Figure 156 The Oracle Forms localization process.

The programmer uses Multilizer to extract strings from the original application file (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (1). The programmer uses
Multilizer or Builder to create the localized application files (2). As a result there will be
one application binary file and one compiled file for each localized language.

Multilizer creates subdirectories under original file folder containing the localized file(s).
I.e. there might be subfolders called ..\en\<localized file> and ..\fi\<localized file>.

The following example figure shows the files that Multilizer uses in the Oracle binary
localization process.

sample.fmb sample.mpr en/sample.fmb
de/sample.fmb
fr/sample.fmb

1 2
Application file Project file Localized application files

en/sample.fmx
de/sample.fmx
fr/sample.fmx

Figure 157 The items of the Oracle Forms localization process.

When deploying the application it is enough to deploy the localized compiled files (e.g.
de\sample.fmx).

 Multilizer 5.1 - Developer’s Guide 165

Creating a New Project with Oracle Forms
The <mldir>\Oracle\Samples\Tutorial contains a form file called sample.fmb.

The form looks like:

Figure 158 Sample form application with the English user interface

Double click the Multilizer icon from the Multilizer program group to start Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button. The File Target sheet appears.

Figure 159 The Source sheet is used to enter the source directory.

In this sheet you will specify the directory where your application is located. Choose the
<mldir>\Oracle\Samples\Tutorial of your Multilizer setup. Project Wizard detects
the platform and target types. The Platform type should be Oracle and the Target type
should be Oracle Form and Menu file. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Accept the default values by pressing the
Next button. The Languages sheet appears. This sheet lets you select the initial
languages you would like to localize in the project. You only need to select one or a few
initial languages, as you can always add more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

166 Multilizer 5.1 - Developer’s Guide

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 160 English and Finnish added to project.

Press the Next button. The Targets sheet appears. This sheet is used to add new targets
to your project or to edit those already contained in it. Usually for most projects types the
default settings are good enough, in our case we would like to scan the PL/SQL code
contained in our application so we will need to edit the targets in order to instruct
Multilizer on which functions to scan.

Figure 161 The Targets sheet

Select the first, and only, target currently in our project and click the Edit button. The
following dialog appears.

 Multilizer 5.1 - Developer’s Guide 167

Figure 162 The Targets dialog

Now select the Tags tab.

Figure 163 The Tags tab in the Targets dialog with default settings

The default settings are visible and we need to change some of them. In our PL/SQL
code we have inserted some calls to the function message in response to the WHEN-
BUTTON-PRESSED trigger of all three buttons in the form:

message('Language changed');

Obviously the function call we would like to scan is the function “message” so write the
function name in the Translate functions field.

168 Multilizer 5.1 - Developer’s Guide

Figure 164 The Tags tab in the Targets dialog with the modified settings

If you have more than one function call to scan, you can write all the names separated by
a semicolon in this way:
message;newMessage;anotherCall

The function names are NOT case sensitive.

Now click OK to return to the Targets sheet.

Because we do not want to add any more files, and we are ready with the target editing,
you can press the Next button. The Finish sheet appears. Press the Finish button to
finish the Project Wizard. The following project grid appears.

 Multilizer 5.1 - Developer’s Guide 169

Figure 165 The project grid.

Save the project by choosing File | Save.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project, save it by choosing File | Save.

Create the localized database files by choosing Project | Create Localized Files. This
will write the localized rows to the tables according to the type of project (field and/or table
localization).

Importing Translations From OTM/OTB into
Multilizer’s Translation Memory
One of the biggest advantages of using Multilizer is the reusability of translations across
multiple projects. This reusability is achieved through Multilizer’s translation memory and
of course it becomes essential for the user to be able to import existing translations into
the translation memory.

Importing of OTM/OTB databases into Multilizer is quite straightforward; in this next
example we’ll show how the import works.

Open the Translation Memory dialog from Tools | Translation Memory menu and
choose the import sheet. In the import sheet click the Add button to open the Import
Wizard.

170 Multilizer 5.1 - Developer’s Guide

Figure 166 The translation memory import wizard.

Now you can choose the import source that in our case is Database, so click the Import a
Database button.

In the Database drop down list select Oracle, and enter the login information for your
OTM/OTB database in the login dialog.

 Multilizer 5.1 - Developer’s Guide 171

Figure 167 The login dialog

Now click the Connect button to login into your Oracle’s Translation Manager database.

Select the Oracle Translation Builder button and select the native language, in our
example English (United States).

172 Multilizer 5.1 - Developer’s Guide

Figure 168 The login dialog after a successful log

After having selected the native, click the Next button. Now you can select which
languages you’d like to import, in our case we will import Italian, Korean and Finnish.

 Multilizer 5.1 - Developer’s Guide 173

Figure 169 The languages selection in the Import Wizard

Now click Next and the import will start.

Only the strings that have been flagged as “Done” in OTM will be imported. Multilizer will
ignore the strings flagged as “Start” and “Revision Needed”.

Now the translations you had in OTM have been imported into Multilizer’s translation
memory and are ready to be reused in your Multilizer projects.

174 Multilizer 5.1 - Developer’s Guide

19
StreamServe

In this tutorial we are going to localize StreamServe's SLS files. They contain the
localized items of reports. Out sample SLS file is used in a product catalog application.

StreamServe Localization
SLS file contain string data. Multilizer creates the localized SLS files from the original SLS
file. The following picture describes the SLS localization process.

Native file French file
German file

English file

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilingual file

or

Figure 170 SLS localization process

The process of localizing SLS files can be divided into 3 basic steps:

1. The programmer uses Multilizer to extract strings from the SLS file. Multilizer
saves these strings into the project file (.mpr).

2. The programmer sends the project file to the translator(s) that use Multilizer to
translate the project file.

3. The programmer uses Multilizer or Builder to create the localized SLS files.

The above will result in one SLS file for every language. The structure of the localized file
is identical to the original one. The only difference is that the selected string data has
been translated to the target language. Multilizer cam create one SLS file that contains
strings is in several languages.

The following figure shows the files that Multilizer uses in the SLS localization process.

sample.sls sample.sls en/sample.sls
de/sample.sls
fr/sample.sls

1 2
SLS file Project file Localized SLS files

all/sample.sls

Figure 171 XML localization process files

To use the new localized resource (e.g. de/sample.sls), deploy or use it instead of the
original SLS file (sample.sls).

 Multilizer 5.1 - Developer’s Guide 175

English File
The <mldir>\Data\Samples\StreamServe\Tutorial contains the English SLS
file. It is a simple file that contains strings for a product catalog report. The strings that
need to be localized are marked with bold typeface.
product_name en Name
product_description en Description
product_company en Company
sport_skiing en Skiing
sport_hockey en Ice Hockey

The SLS file format is simple. Each line contains one string. The line starts with the string
id, following with the language code and finally the string value. These three parts are
separated by white spaces.

Creating a New Project
Double-click the Multilizer icon from the Multilizer program group to launch Multilizer.

Choose File | New from the main menu to start the Project Wizard. The Target Type
sheet appears. Press the Localize a File button.

Figure 172 The File Target sheet is used to specify the XML file to be localized.

This dialog specifies the directory where your application is located. Choose the
<multilizer>\Data\Samples\StreamServe\Tutorial subfolder of your Multilizer setup.
Project Wizard detects the platform and project types. The Platform type should be Data
and the Target type should be StreamServe file. If they are wrong, check the right types.

Press the Next button. The Information sheet appears. This sheet specifies the project
name and other project related information. Press the Next button. The Languages sheet
appears. This sheet lets you select the initial languages you would like to localize in the
project. You only need to select one or a few initial languages, as you can always add
more languages later.

From the Available languages list select English and drag the item to the Selected
languages list box, or press the >> button. This adds English to the project.

176 Multilizer 5.1 - Developer’s Guide

Add some other language to the project as well. If you are new to Multilizer, it might be
easiest to add Finnish, so that you can follow the examples shown in this tutorial directly.
If you add Finnish the dialog box should look like this:

Figure 173 English and Finnish added to a project

Press the Next button. The StreamServe sheet appears:

Figure 174 The StreamServe sheet is used to set the language codes.

This sheet specifies the language codes used in SLS files. SLS files can use any
language code. It is up to the application. You can select between three language coding.
They are ISO, Windows and Oracle. If they do not match you needs, double click the
language row in the Language codes list and enter the language code that you want to

 Multilizer 5.1 - Developer’s Guide 177

use for that language. We recommaned to use ISO language codes because they are
standard way to represent language id. Most operating systems and application use
them.

By default Multilizer creates only the multilingual SLS file. If you want to create a separate
SLS files for each language, check Localized files in the Output Files group box.

Press the Next button. The Targets sheet appears. This sheet lets you add more files to
be localized. We do not want to add any more files. Press the Next button. The Ready to
create project sheet appears. Now you have almost finished creating the project.

Press the Finish button to end Project Wizard. Multilizer then scans the application, and
extracts all resource strings from it, and builds a project file of them. It only takes a few
seconds for a project as simple as the Dcalc, but if you had a larger project you can
monitor the progress from the status bar.

When the scanning is done, the following project grid appears:

Figure 175 The project grid

On the left side there is a tree view that contains the targets and the items they contains.
Our project contains one target, sample.sls, and it contains two groups. To show only the
string beloning to a specific group select the group in the tree. On the right side there is
the editing grid. It contains the native column and the English column. To show another
language select the language from the combo box above the grid.

Save the project before moving on by choosing File | Save As.

Translating a Project
To translate the project read the Translating a Project chapter in the end of this part.
When you have translated the project save it by choosing File | Save.

Create the multilingual SLS file by choosing Project | Create Localized Files. This
creates the multilingual SLS file in the language specific sub directories (e.g.
‘all\sample.sls’). The file looks like this.
product_name en Name
product_name fi Nimi
product_description en Description
product_description fi Selitys
product_company en Company
product_company fi Yritys
sport_skiing en Skiing
sport_skiing fi Hiihto
sport_hockey en Ice Hockey

178 Multilizer 5.1 - Developer’s Guide

sport_hockey fi Jääkiekko

The structure is identical to the native (English) one but the file contains also the Finnish
strings.

Tagging
In many times the space available for a string is limited. For example the layout of the
report is designed in such way that there is only cetain space fo the string. You could use
Multilizer's Row | Max Characters or Row | Max Pixels menu to set the maximum length
of a string. However this can be automated be adding the maximum length data into the
string id. This makes it possible for the developer to set the maximum lengths for the
string.

Multilizer uses tags in the comment to specify a comment and to set the maximum
lanegth. The format is:
id language string //mlz [comment][MaxChars=C][MaxPixels=P]

where

mlz It the multilizer tag.

comment is an optional comment to be added to the Multlizer project.

C is a positive interger number specifying the maximum length of the translation in
characters.

P is a positive interger number specifying the maximum length of the translation in
pixels.

In the following example the English string ("This is a string") does not belong to any
group, has SampleLabel id, and has no size limitation.
SampleLabel en This is a string

In the following example the English string ("Name of the product") belongs to the Main
group, has NameLabel id, and the maximum string size in characters is 25.
Main_NameLabel en Name of the product //mlz MaxChars=25

In the following example the English string ("User name") belongs to the Login group, has
UserLabel id, has a "A comment" comment, and the maximum string size in pixels is 120.
Login_UserLabel en User name //mlz A comment MaxPixels=120

 Multilizer 5.1 - Developer’s Guide 179

20
Translating a Project

The grid displays one language at a time. There is also additional information available
for each string such as context information or a comment. You can toggle these views on
and off from the View menu. To change between languages, click on the drop-down
combo box at the top of the grid and select the language you want to work on.

We could translate Finnish (or your own language) manually by entering the translations
to the grid. However there is an easier way: automatic translation with the translation
memory.

By default the translation memory is empty. You can add items to it in two ways. Every
time you enter a string to the grid, Multilizer will automatically add every translated string
to the translation memory. This means that you don’t need to translate the same string
twice. The second way to add items to the translation memory is to import glossary files,
e.g. TMX or Microsoft® glossary files. You can also import previous translation memory
files, e.g. mld files. You can even fetch translation data from databases or database
servers.

For additional information about the translation memory, see the online help topic
"Translation Memory".

Multilizer Translation Memory can also be configured to work on a database server. This
enables multiple users to work with it concurrently. (Translation Memory on database
server, p. 213)

The next task is to translate the Finnish (or your own language) column. If you have used
Multilizer before to translate strings, or you have imported glossaries into the translation
memory, we can now use translation memory to translate some of the strings. Right-click
the header of the Finnish column, where it says “Finnish”. A popup menu appears.
Choose Translate | Using Translation Memory. Multilizer translates all the strings it can
find from the translation memory. It is up to you or your translator to translate the rest of
the project.

The editor is easy to use. Use the arrow keys to move the selection to the a cell and start
typing. If you leave a translatable cell empty, the native string will be used instead.
Because the native language is English you do not have to translate the English column
at all. You can translate strings in the English column, if you wish to correct a typing-error
or alter spelling of the native string, but if the native string is acceptable, you don’t need to
change it.

On the left side of the grid is a tree view from which you can select the types of strings
you want to view in the grid. You can, for example, work on the menus first and then
concentrate on the forms.

When you have translated the project, save it by choosing File | Save. For now you do
not have to translate all strings, just those strings that you want to. Where there is no
translation available, the native string is used instead, thus making it possible to test the
localization as the work progresses.

180 Multilizer 5.1 - Developer’s Guide

21
Adding Languages

It is quite likely that you need to add new languages to your applications after the original
languages. This is the most powerful features of Multilizer. After making your application
multilingual, adding new languages is a simple operation. You do not have to change the
source code at all. Neither do you have to change resources (forms) in any way. In fact,
you do not even have to recompile the application.

Let’s add Swedish to the project file. Launch Multilizer. Choose File | Open and browse
to the folder containing the dcalc.mpr project file. Choose Project | Languages. The
Languages dialog box appears:

Figure 176 The Languages dialog box lets the user add or remove languages

Select Swedish from the available languages and press the >> button. Press the OK
button to close the dialog box. Swedish column appears to project file’s grid.

Changing the System Language
Some Windows applications are so called Ansi applications. This means that they do not
use Unicode but code page related character sets. When running such an application the
system code page of the operating system must match the code page used by the
language of the applications. For example if you have an English Windows and you are
trying to run an Japanese software you might get most of the strings containing garbage
strings. The following image shows such an application.

 Multilizer 5.1 - Developer’s Guide 181

Figure 177 A Japanese application on English system code page

In order to show Japanese text correctly you must change the system code page to
Japanese. The procedure depends on the Windows version but is always done using the
Control Panel.

Windows XP
Start Control Panel and launch Regional and Language Options. From the Regional
Options sheet set the Standard and format to Japanese and Location to Japan.

Figure 178 A Japanese regional options

From the Advanced sheet set the Language for non-Unicode programs to Japanese.

182 Multilizer 5.1 - Developer’s Guide

Figure 179 A Japanese non-Unicode options

Press OK. The system prompts to reboot. Do so.

Windows 2000 and Windows NT
Start Control Panel and launch Regional Options. From the General sheet set the
Settings for the current user to Japanese.

Figure 180 A Japanese locale options

Press the Set default button and select Japanese.

 Multilizer 5.1 - Developer’s Guide 183

Figure 181 A Japanese non-Unicode options

Press OK twice. The system prompts to reboot. Do so.

Windows 95, 98 and ME
It is not possible to change the system code page. Either upgrade to 32-bit Windows or
install a localized Windows 9x (e.g. Japanese Windows ME).

184 Multilizer 5.1 - Developer’s Guide

III
Part III: Using Multilizer

The purpose of this part is to familiarize you with the software globalization using
Multilizer tools. To obtain the most precise definitions on use of components and
technical details, please refer to the on-line help.

Using Multilizer part includes the following:

• Introduction to Multilizer user interface.

• Multilizer Translation Memory maintenance.

 Multilizer 5.1 - Developer’s Guide 185

22
Globalization Process

The technical part of the globalization process can be divided roughly in three phases:

• Internationalization (p. 188-).

• Localization, including translation (p. 194-).

• Quality assurance (p. 210-).

It is essential to understand the needs and requirements of the international marketplace
as early as possible in your development cycle, and then to build the capability to support
these in your design and development processes.

We are designing customer-focused products and services already. It is a question of
shifting that focus to embrace international customers as well. Every member of your
team has to acknowledge this.

By doing this, you will be internationalizing your product - i.e. designing and developing a
product in a way which allows a reduced time to market, reduced cost and higher
customer satisfaction when the need arises to localize the product for a particular market.

The following chapters will go through the different phases and show how Multilizer helps
to accomplish the aforementioned goals.

Globalization team
Background
Traditionally, globalization has been outsourced to globalization service providers. This
has meant that the entire software project has been frozen to its current stage and sent to
the service provider.

Multilizer technology is designed in a way that it provides software houses with a
possibility to do a great part of the globalization in-house, with the following benefits:

• Continue development during on-going globalization.

• Produce globalized versions faster.

Team members
The globalization team that works with Multilizer consists typically of the following
members:

• Project Manager.

• Software Engineer.

• Translator.

Project managers and software developers are found in software companies, and
translators are normally freelancers or services bought from a translation agency.
Following paragraphs go through the tasks that belong to different teams.

Tasks
In a typical software company, the developer will take care of all technical tasks. He will
use Multilizer to create a new project, do the internationalization and localization.

186 Multilizer 5.1 - Developer’s Guide

Furthermore he might take care of quality assurance tasks. In addition to using Multilizer
to accomplish these tasks, he typically needs to make changes to the software using the
development tools.

Team member Tasks

Project Manager Project management.

Software Engineer Internationalization, localization engineering,
technical quality assurance.

Translator Translation, linguistic quality assurance.

Following paragraphs will explain the role of Multilizer in the tasks above.

Work-flows
As mentioned above, the globalization team consists of a project manager, a software
engineer and a translator. The picture below shows the globalization project workflow in
its simplest: there is a software engineer developing software and doing the
internationalization/localization related software development and a translator that does
the translation.

Multilizer

Multilizer

Software Software

English
German
Spanish
Japanese

...

D e v e l o p m e n t

T r a n s l a t i o n

Figure 182 Multilizer globalization workflow

1. The programmer uses Multilizer to extract strings to be localized from the application
and saves them to a project file.

2. The programmer sends the Localization Kit (the project file, Multilizer® Translator
Edition™ and related files, such as documentation, schedule or terminology
glossaries/translation memory) to the translator(s).

3. The Localization Kit is a self-installing Windows executable that installs in translator’s
PC.

4. Translators will complete the translations using Multilizer, and benefit from features
like translation memory and glossaries that automate translation work.

5. When the project is translated, the translator sends the translations back to the
developer.

6. Finally, the developer uses Multilizer Import Wizard to integrate the translations to the
project file and build localized resources or executables.

Enabling concurrent work
It is possible to proceed simultaneously with the development and translation. Therefore,
the savings in time are bigger the earlier the translation starts. The Import Wizard ensures

 Multilizer 5.1 - Developer’s Guide 187

that translations are easily integrated in the software even after major changes in the
software.

Localization type
Localization type impacts the work-flow a lot. Technically the differences affect just the
way localized versions are built (After phase 6 in the preceding figure). Following table
describes what building localized versions means in the context of different localization
types:

Localization Type Build localized versions

Binary localization The strings of the original executable
(binary) are replaced with translations. The
result is one localized executable for each
language.

Source localization The strings in the source code files (string
resources, form files, etc.) are replaced
with the target language strings.

After creating localized source files, the
project(s) are compiled into localized
executable(s).

Component localization The strings in the source code files (string
resources, form files, etc.) are included in a
database along with the equivalents in
target languages.

Multilizer components are added to the
project source code to link the database in
the software to enable multilingual
behavior. Finally the software is compiled
into a multilingual executable.

It is important to understand that none of the localization types require the source code
be sent to the translator as long as Multilizer is used in the company that develops the
software.

If the entire localization process is outsourced to a localization vendor, then binary
localization is the localization type required, if software source won’t be sent to the
localization vendor.

More info on localization types is available in the Getting Started section of this manual.

188 Multilizer 5.1 - Developer’s Guide

23
Internationalization

Internationalization (I18N) is the process of generalizing the software so that it can handle
multiple languages and cultural conventions without the need for re-design.

An important aspect of internationalization is the separation of text from the software
source code. There are two reasons for this:

• Replacing the original texts with translations will not affect the source code.

• Translators won’t be able to change – or break – the program code.

Basically internationalization is moving translatable text (i.e. any text visible to the end-
user) to separate resource files. This makes software’s executable code language-
independent, preventing localization from resulting in multiple code-bases.

Different software development environments, development tools and operating systems
provide different technical foundations for internationalization. To add the best possible
globalization support, Multilizer provides different ways to do the internationalization.
These are introduced in the subsequent chapters.

To do’s
In the Multilizer context internationalization covers the following:

• Internationalizing software (manual work).

• Extracting strings from software (automated).

• Checking internationalization quality (automated check routines).

The degree of manual work in internationalization depends on the localization type. With
binary localization all strings must be isolated into resources. In source-code localization,
Multilizer is capable to extract also strings that are not in string resources, but within
program code, for example. In component localization, Multilizer components add extra
code to software, doing essential parts of the internationalization automatically. These are
explained in the end of this chapter.

Extracting strings from software is done automatically. This is done for the first time when
creating a Multilizer project file. This is explained in the following chapter.

Internationalization QA checks are explained in the QA section of this manual. C.f.,
Quality Assurance – QA, p. 210.

Creating a new project
By launching Multilizer and choosing File | New, Project Wizard will start guiding you
through the necessary steps to create a new project file.

Specifying the target type
The purpose of the Project Wizard is to add the initial target the the project. A target
specifies an item to the localize. The item can either be a file or a database.

 Multilizer 5.1 - Developer’s Guide 189

Figure 183 Starting the Project Wizard

If you plan to add a file based target press the Localize a File button. If you plan to add a
database based target press the Localize a Database button.

Specifying a file target
If you pressed the Localize a File button your first tark is to select the directory where the
file is located. If the directory contains file, Multilizer tries to detect the type of the file. if
succesfull it sets the platform and the target types to match the file type.

Figure 184 Selecting the directory of the program source and application type

190 Multilizer 5.1 - Developer’s Guide

The different platform and target types are discussed in the Getting Started section of this
manual.

In the same view as where you choose the directory, you define the application type.
Multilizer automatically detects what kind of source is located in the specified folder. If
detection fails, you can force the type to be one of those mentioned above.

Entering project information
The next screen is for entering information to the project. This information is useful for
later identification of the project and the project file. You always have to enter the File
Name.

Figure 185 Entering project information

Selecting languages used in the project
After entering project information, you proceed to the language selection view. In this
view you specify which languages to include in your project.

 Multilizer 5.1 - Developer’s Guide 191

Figure 186 Selecting languages and sub languages

Although the original software was created in English, you can add English also to the
selected languages. It gives you the possibility to change the original language’s texts.

Both languages and sub-languages can be selected to be used at the same time in one
project. The difference is that a sub-language is country specific. E.g., British English
differs from US English. Therefore you can specify which language to use. Of course, you
can select both English versions for your project.

You don't have to know at this phase which languages you might add in the future. New
languages can be added later, even during the localization project.

Adding Targets
The next screen lets the user add different targets to the same project. To add a new
target press the Add button. There can be any number and kinds of targets in the project.
For example there can be a Delphi executable, a Palm executable and an XML file all in
the same project.

192 Multilizer 5.1 - Developer’s Guide

Figure 187 Adding targets to a project

Finishing the Wizard
The next step is to scan the targets and create a new project file – press Finish. Now your
applications are being scanned in order to find the strings to be translated. The project file
will include strings from the targets

You can now proceed to editing the translations. The following chapter familiarizes you
with the Multilizer interface.

I18N essentials
Although Multilizer is optimized to scan strings from each supported software project type,
there are situations that not all strings get extracted. This is due to the fact that the project
source code isn’t prepared for localization, i.e. it is not internationalized.

The developer has to take care of re-working software so that Multilizer can be used
efficiently. The following list contains some very essential issues that can affect the entire
globalization project if not taken into account:

• Eliminate UI text length restrictions. Translated strings are typically longer than the
English strings. This is a typical GUI design issue, which involves re-designing
dialogs and frames.

• Ensure support for accented characters, including double byte (if your software is
intended for Far Eastern markets).

• Check for hard coded strings in the source-code. Move them to string-resources or
use the proposed way in the development platform that you work with.

• Enable support for foreign keyboard layouts.

• Avoid fixed date, time, currency or number formats, use the operating system’s
support to handle these.

• Avoid text in bitmaps as they are hard to edit. Multilizer scans for strings, thus it
doesn’t recognize any text in bitmaps.

 Multilizer 5.1 - Developer’s Guide 193

Keeping the previous issues in mind, following chapters will show what Multilizer does in
the internationalization phase of source-code, component and binary globalization
projects.

Source-code globalization
In source-code globalization projects, Multilizer will do the following in the
internationalization phase:

• Scan through the source files.

• Add strings to the localization database.

Multilizer will locate all strings, assuming that they contain locale-dependent data. The
source-code will not be altered. Instead, Multilizer will create localized source-codes of
the native version (C.f., Localization, p. 194).

By default, Multilizer extracts all strings from the source-code. Because some strings are
used for other purposes other than to communicate with users, Multilizer let’s you alter
source code scanning options. This way you can ensure that the localization database
will include locale-specific data only. In Multilizer workspace the strings can also be
locked to prevent their localization.

Component globalization
Multilizer component globalization projects are done much in the same way as source-
code globalization projects. The biggest difference is the use of Multilizer components
that enable the creation of multilingual software that lets the user change the language at
run-time.

Multilizer will do the following in the internationalization phase:

• Scan through the source files.

• Add strings to the localization database.

In addition to using Multilizer, Multilizer components are added to the software project:

• Add the Dictionary component to attach the localization database to the software.

Binary globalization
In binary globalization projects, Multilizer will do the following in the internationalization:

• Scan through the binary.

• Add strings to the localization database.

Multilizer will locate all strings, assuming that they contain locale-dependent data. The
original binary will not be altered. Instead, Multilizer will create localized binaries of it (C.f.,
Localization, p. 194).

By default, Multilizer extracts all strings. Because some strings are used for other
purposes other than to communicate with users, Multilizer let’s you modify the way
Multilizer performs the scan. This way you can ensure that the localization database will
include locale-specific data only. In Multilizer workspace strings can also be locked to
prevent localization.

194 Multilizer 5.1 - Developer’s Guide

24
Localization

Localization involves making the software linguistically and culturally appropriate to the
target locale (country/region and language) where it will be used and sold.

This chapter focuses on the engineering aspects and the following chapter will cover the
translation tasks.

To do’s
In Multilizer context, localization covers the following:

• Preparing a project to be outsourced (manual work; optional).

• Translation of the software (manual work; automated).

• Integrating translated texts in Multilizer project file (automated; Importing
translation to a project, p. 204).

• Creating localized versions of the original software. (Build localized software
versions, p. 208)

• Checking the localization quality (automated check routines; Quality Assurance –
QA, p. 210).

The translation is initiated by creating localization kits that are sent off to the translators.
Building a kit with the Exchange Wizard is explained in this chapter, the translation work
is explained in the following chapter.

When translations are completed, translators send them back to the developer who
integrates them into project file with Import Wizard.

Once the translations are integrated in the project file, the developer can build localized
versions of the software. Depending on the localization type, the result of the build
process varies (C.f., Localization type, p. 187).

The localization quality checks are explained in the QA section of this manual.

Preparing a project to be outsourced
Multilizer automates the creation of the project file and picks the translatable data from
the original software. Although this might be sufficient, it is recommended to check out the
project data and adjust Multilizer project settings in the way that the translation can start
as effortlessly as possible.

Before sending off the translations to linguists, the developer can include supportive
information in the project file. The purpose is to prevent errors in the translation process,
thus stream-lining the overall process flow.

Key tasks:

• Adding visual context.

• Adding comments.

• Locking strings – preventing translations of strings.

• Adding project strings.

• Adjusting scanning options.

 Multilizer 5.1 - Developer’s Guide 195

• Updating the project file.

• Pre-translation.

The supportive information is easily included in the Localization Kit sent to the translator.
Multilizer provides, automatically if wanted, all (Multilizer) documents, tutorials,
translatable material and if wanted the translation tool, documentation and source in an
easily deployable kit – the localization kit.

Adding visual context
Adding visual context means that images (screenshots) are attached in the project.

For example, in the following picture, the user has right-clicked item #14 in Dialogs. If the
user has copied the dialog from the original software to the clipboard, he can choose
Paste Image, and the screenshot is automatically added in the project.

Figure 188 Multilizer User Interface - the left-hand side pane

By choosing Page Properties, the user can also add textual information that lets the
developer give the dialog resource a more descriptive name and comments. Targets can
also be added, edited or removed from this menu. Finally, with the extra information
attached, the working place looks as follows.

196 Multilizer 5.1 - Developer’s Guide

Figure 189 Multilizer User Interface - the right-hand side pane

With the visual context, it is easy for the translator to do the translations. He immediately
sees where the translations are placed. Furthermore the description gives a hint how to
find the dialog in the original software. The ‘goto dialog‘ explains more than just a
resource id.

Adding comments
With the same principles as adding comments to a program part, such as a dialog, you
can add comments that are related to a single text item in the project.

The simplest way to add comments is to right-click the left margin of the translation grid
and choose from the context menu Comment… A comment dialog opens and lets you
type in the comment.

Figure 190 Translation Comment dialog box

You can also turn on showing comments in the Translation grid by choosing View |
Comment from the main menu.

Locking strings – preventing translation of strings
There are strings that shouldn’t be translated in any occasion. For example, by default
Multilizer finds SQL Query strings from the software and adds them to the project.
However, these are seldom translated. To prevent the translation you can:

• Tell Multilizer not to scan SQL Query strings (C.f., Adjusting scanning options, p.
198).

 Multilizer 5.1 - Developer’s Guide 197

• Exclude strings from the project file. Choose Project | Exclude Strings | By
Native… and type in the native strings that mustn’t be included in the project.

• Lock the string.

Locking strings is easy. Right-click the left margin of the translation grid and choose from
the context menu Do not translate. The line gets gray and editing translations is
prevented.

Adding project strings
It may happen that not all the strings are added to the project after the first scanning. You
may also need to maintain separately a group of strings that you need to include in your
software. These conditions can become true in component localization projects with

D
C
c
l
o

elphi &
++Builder;
omponent
ocalization
nly.
Delphi or C++ Builder.

For the purposes mentioned above there is a possibility in Multilizer to add strings
pertaining to a certain logical group.

Figure 191 Multilizer User Interface - the right-hand side pane, including special purpose strings to
the project

If you choose e.g. Dialog strings, you get the following Dialog, which lets you add all the
strings encountered in the dialog that you choose.

Figure 192 Standard Dialog strings

The actual dialog names may vary depending on your application type.

198 Multilizer 5.1 - Developer’s Guide

These additional included strings are defined in the Multilizer/bin program directory in
*.mls files.

You can easily define your own string groups for any third party component. Multilizer lets
you then add the strings to the project. To do this, you can either create a new *.mls file
or edit any of the existing ones. The syntax of these files is described in the Multilizer
help. It is also easy to modify an existing one and get the syntax from it. See more in the
online documentation under the topic mls.

Adjusting scanning options
After creating a new project, you might encounter unwanted strings in the project. To
prevent Multilizer from adding such strings, you can adjust scanning options and after that
update the project.

Scanning options are defined by choosing Project | Targets... from the menu. It opens
the following dialog.

Figure 193 Defining targets

Using the Targets dialog, you are able to define the targets to be scanned in your project.
For each target you can also define file-type specific scanning properties.

To add new files to be scanned, press the Add button. Multilizer shows the Target
Wizard. It is similar to the Project Wizard used to create the project.

Another way to add a target is to press the New button. Multilizer shows Add Target
dialog box that displays a list of the different target types recognized and supported.

In typical projects, there is only one or a couple of targets in one project. For example, a
small Palm project might include only the Palm Application in the targets list.

To get software development-environment specific guidance in adjusting scanning
options, consult the on-line help. The development tool / platform-specific tutorials also
give more information of the file types mentioned above.

Updating the project file
You have to ensure that the project file is up-to-date. This means that when you have
made changes in the software during the localization process, Multilizer must be told to

 Multilizer 5.1 - Developer’s Guide 199

synchronize the software’s strings with the strings in the updated software. This is done
easily by:

• Pressing the scan button on the tool bar or

• Choosing Project | Scan... from the menu.

• Choosing Project | Smart Scan... from the menu.

Scanning
Once scanning has been started, the following window appears on the screen showing
how the scanning is proceeding.

Figure 194 Window showing the project update process

By default Multilizer scans all the strings to be translated, using the default scanning
options. The next chapter describes how you can customize the scanning of your
program source.

Pre-translation
Automated pre-translation of the software before sending it off to the translators has
many advantages. The two most important are:

• Company-specific terminology will be translated following the company policy

• Automated translation saves time and costs.

Choosing Project | Translate | Using Translation Memory… does the pre-translation.
Multilizer compares the original ‘Native’ string and searches from the translation memory
the translation for it.

To be able to do the pre-translation, the translation memory must be configured properly
and there must be translations in it. More info on this is available in Translator’s Manual.
Also see: Translation Memory on database server, p. 213

Although Multilizer is capable of re-using translations by storing them in a Translation
Memory, it is recommended that a linguist is given the possibility to validate/correct them.

Building a Localization Kit
The Exchange Wizard provides an easy way to send and distribute project data. It lets
you create a package including both Multilizer (without database support) and the project.

Exchange Wizard works in two ways:

• The developer uses Exchange Wizard to send the (sub)project to the translator.

• The translator uses Exchange Wizard to return the (sub)project back to the
developer.

To start the Exchange Wizard choose File | Exchange. The first step is the specify the
delivery method. Multilizer lets you either cto create an exchange file or upload the
exchange file to a service. Services are enabled if you have installed one or more service
DLL.

200 Multilizer 5.1 - Developer’s Guide

Figure 195 Selecting the delivery method

The next step is to specify the languages to be sent. In the same dialog the strings that
are included can also be selected based on their status. Also the application(s) that
belong to the project can be included to the package.

Figure 196 Selecting languages

Next step is to specify the properties for the project to be deployed.

Figure 197 Specifying project properties

Next it can be specified whether the Multilizer application itself will be included in the
package. If selected, Multilizer will automatically be installed when translator receives the
package. At this point, also Translator’s online manual can be included in the package.

 Multilizer 5.1 - Developer’s Guide 201

Figure 198 Selecting the type of the package

Press the next dialog button.

Figure 199 Files included in the deploy package

You can add any other files to the package by pressing the Add button.

In the last step, you have to specify the name for the package. Then press Finish to
create the package.

Figure 200 Specifying the package executable name

Finally the Wizard informs you what file(s) you have to send to the translator.

202 Multilizer 5.1 - Developer’s Guide

Figure 201 Package was created successfully

 Multilizer 5.1 - Developer’s Guide 203

25
Translation

Translation is an essential part of software globalization. Persons with no technical
background generally do this part of the globalization project. Therefore, in over 90% of
globalization projects the translation is outsourced.

Translator’s Guide goes through the translation related tasks. It describes the Multilizer
user interface from translator’s point of view. Furthermore, it tells how to maximize the re-
use of translations using Multilizer’s Translation Memory.

Both MULTILIZER® 5.1and MULTILIZER® 5.1 Translator Edition are based on the same
technology and formats. Therefore, using Multilizer throughout the localization process –
including translation – guarantees the best quality and shortest project loop-through time.

204 Multilizer 5.1 - Developer’s Guide

26
Build localized software

Building localized software is the final phase of localizing software with Multilizer. Binary
and source localization projects will generate localized software, while component
localization projects generate multilingual software.

To do’s
Following steps have to be completed to build the localized software versions:

• Integrate the translations into a project if translation was outsourced. (Importing)

• 1) Build localized executables (binary localization project) or
2) Build localized source files (source localization) or
3) Create a Project file that is integrated in the software with components (component
localization).

• Compile the software (not needed in binary localization nor in certain component
localization projects).

Importing translation to a project
By using the Import Wizard you are able to integrate outsourced translations back into the
project. Importing translations is a straightforward process. However, imprecise use of the
import command may cause loss of data. Therefore the user must use this command with
care.

Starting the Import Wizard
The Import Wizard is started by choosing File | Import... from the menu. The following
dialog appears.

 Multilizer 5.1 - Developer’s Guide 205

Figure 202 Select the source for the import

In this dialog you select whether you want to import a file (e.g. project file, dictionary file,
tmx file etc.), a database (any ADO/ODBC compatible, DBISAM, DB2, Interbase, MySQL
or Oracle), or import data from a service.

Depending on the Multilizer version and the configuration of your computer, there may be
Impoer from a Service button disabled.

In the dialog below, ‘Import a File’ was selected and a dictionary file was entered.

206 Multilizer 5.1 - Developer’s Guide

Figure 203 Select the source for the import. Here ‘File’ was selected

When you are ready, press the Next button to proceed.

Specifying import properties
After specifying the import data type, you have to select the languages that will be
imported.

 Multilizer 5.1 - Developer’s Guide 207

Figure 204 Select the language(s)

The Languages list box contains the language that will be imported. By default all the
languages are selected. Deselect the language(s) that you don’t want to import. (In the
dialog above, there is only one language to be imported.)

Press the Next button.

208 Multilizer 5.1 - Developer’s Guide

Figure 205 Import Options

Select the import method. Press F1 to get deteiled information about the options. Press
the Finish button to import the project.

Build localized software versions
When the translations are completed in the project, it’s time to create the localized
versions of the original software. Choose Project | Build Localized Items or Project |
Make Localized Items to start building the localized software versions.

The Build or Make commands can also be executed the toolbar:

Figure 206 Multilizer user interface

You can also use the command-line tool MlBuild.exe to create localized software
versions. This enables the use of efficient build batches.

More information of the localization types is in the Getting Started manual and the
tutorials.

Binary localization
In binary localization the build process creates localized executables, one for each
language. These are ready-to-run language versions of the original software and should
just pass the quality assurance before distribution.

 Multilizer 5.1 - Developer’s Guide 209

Because binary localization affects just the resource-part of the original software, there is
no difference in the localized software’s performance compared with the original one.

Source localization
In source localization the build process creates localized resource/source/project source
files. After this, the software has to be compiled into localized executables.

Consult you software development environment documentation, if you want to add the
compilation into your batch process.

These compiled language versions should pass the quality assurance before distribution.

The source localization and the support for different source code formats differ heavily
between the software development environments supported. More info is available in the
tutorials.

Component localization
In component localization the build process creates a Run-time Dictionary that contains
the translations and the locale data.

The Run-time Dictionary is attached to the software with Multilizer components, and
finally the software is compiled into one multilingual executable.

The Run-time Dictionary can be stored in different formats, such as Ansi text file, Unicode
text file, Multilizer Binary file as well as database tables. Text files and Multilizer binary file
can be embedded in the executable, to create a single multilingual executable.

Multilizer components add also code into the software that enables advanced L10N
features, such as changing language at run-time.

If translations are stored in an external Run-time Dictionary, additional language support
can be added without recompiling the software. Updating the Run-time Dictionary will
upgrade the software’s language support.

210 Multilizer 5.1 - Developer’s Guide

27
Quality Assurance – QA

Although following the guidelines of this manual prevent many quality assurance
concerns, there are several issues that cannot be predicted. Multilizer includes features
that make it easier to detect such issues.

The different levels of testing software in an ongoing software localization process are the
following:

• Internationalization testing

• Localization testing

• Functionality testing

The two first testing levels are applied during the ongoing Multilizer localization process.
This chapter introduces some basic features in this area.

Before releasing the final version of the localized software, the functionality checking
should be done. Functionality testing verifies, for instance, how compatible the localized
application is with localized operating systems and applications, or local hardware
standards.

Test languages
You can define and use Test languages in Multilizer to detect I18N issues before even
sending out any data to the translators.

After first scan, you can define that some of the languages included in the project is a test
language. Right-click the header of any language column to open the language
properties. Choose Properties… and the Test tab.

You can choose between following Test languages:

• Cover – converts all characters into a sequence of identical characters.

• Minimum – truncates the string into one character.

• Pseudo language – gives a rich set of features to simulate real languages.

 Multilizer 5.1 - Developer’s Guide 211

Figure 207 Language Properties dialog box

Once you have defined the Test language, you can fill the test in the language column.
After that, you can build a localized version of the software based on the test language
and run it.

Running the software with a test language lets you detect several problems such as:

• Overlapping strings.

• Non-translated strings caused by issues in internationalization.

• Memory allocation errors caused by strings expansion in size.

• Etc.

Cell highlighting
Cell highlighting is used to visualize changes in the string length. This feature helps to
detect issues caused by strings that expand (C.f. Test languages). To toggle Cell
highlighting on, choose Tools | Options | General… and the Grid tab.

212 Multilizer 5.1 - Developer’s Guide

Figure 208 Project options dialog box

If you specify the Threshold value to 20 percent, cells will be displayed in blue if the
translation becomes 20% longer or more than the native string. The bigger the
differences, the darker shades of blue are used.

Translator components
In component localization, you can specify the behavior of the software, if a translation
fails due to missing translation.

You can either tag the native string at run-time, or throw an exception in the software on
translation failure. Using this feature systematically you can reduce the time in locating
internationalization issues in your software source.

Component
localization
only.

 Multilizer 5.1 - Developer’s Guide 213

28
Translation Memory on database server

General considerations
By default Multilizer Translation Memory (MTM) uses built-in single-user database. To
enable more efficient use of it, MTM can be installed on database server.

Before switching MTM to server database, ensure the following:

• This feature requires Multilizer for Enterprise or Multilizer for Oracle. Ensure that
you have the required licenses.

• Ensure that your RDBS is installed and configured properly. Refer to the RDBS
documentation/vendor in this.

• Multilizer should not store translations in MTM when saving project (See
Tools Options General, Translation tab).

• Set access levels according to users’ tasks (See: Managing MTM rights, p. 218)

All examples of this document are shown for MS SQL Server.

You need to have Multilizer for Enterprise or Multilizer for Oracle in order to use this tool.

Database related tasks
Create new database
This is done with SQL Server Enterprise Management Tools.

Create a new database and add the permitted users in it. See ‘Connecting from Multilizer
to MTM’ (p. 214) for required privileges.

Define Connection parameters
Multilizer recommends that you create a DSN on the client computer.

Enter the connection parameters according to the SQL Server installation and database
in use.

214 Multilizer 5.1 - Developer’s Guide

Set authentication method according to your company’s security policy.

Connecting from Multilizer to MTM
To connect to a new MTM, choose in Multilizer Tools New Translation Memory…

If the database is empty, Multilizer will create the required tables for MTM. Ensure that
you have privileges to modify database metadata (create/alter tables, indexes, etc.). This
user becomes ‘owner’ of the MTM, and can’t be changed afterwards.

For later MTM use, user needs read and write access to the tables.

 Multilizer 5.1 - Developer’s Guide 215

216 Multilizer 5.1 - Developer’s Guide

 Multilizer 5.1 - Developer’s Guide 217

After specifying Connection string, press Connect… to test connection. If test succeeds,
Next button becomes enabled. Press Next to proceed.

Enter your details in dialog.

218 Multilizer 5.1 - Developer’s Guide

Managing MTM rights
Installing MTM on a server enables multiple users to concurrently work with it.

In order to control how MTM is used, it is highly recommend attaching different
permissions to users according to their role.

To set access rights, connect to MTM with owner privileges. Information tab will show
users and their access right. To change access right level, right click any user and select
desired rights from popup-menu.

Translate Access
Typically Translators and QA Personnel are granted Translate access. This setting
enables them to use MTM for translating projects.

Ensure that project translations are not saved in MTM automatically. (See
Tools Options General, Translation tab).

 Multilizer 5.1 - Developer’s Guide 219

Translate and add access – Full access
Localization Managers are granted Translate and add access or Full access. In addition
to being able to use MTM for translation, they can add/update glossaries in it.

Full access enables removing of glossaries from MTM.

220 Multilizer 5.1 - Developer’s Guide

29
Builder Command Line Tool

It is common to have a build file that compiles the release application without debug
information, creates the setup applications, etc. You cannot use the interactive Multilizer
application in such a process. Fortunately Multilizer contains a command line tool called
Builder. It provides a command line interface to most Multilizer functions such as
scanning, building, exchanging, importing and exporting.

The syntax of the Builder tool is:
mlbuild commands project [-q] [-h]

commands One or more commands and their parameters. The available commands
are:
- add Adds a newe target to the project
- scan Scan the project
- remove Remove the unused strings from the project
- import Import a file to the project
- export Export data to a file
- exchange Create an exchange project
- translate Translate the project
- build Create the localized items and/or the dictionary
- dictionary Create the sub dictionary

project Multilizer project file (.mpr)
-q Quiet mode. Write no output except errors.
-h Show the detailed command specific help.

mlbuild scan -h shows the detailed help of the scan command.

You need to have Multilizer Enterprise edition or Multilizer for Oracle in order to use this
tool.

 Multilizer 5.1 - Developer’s Guide 221

Adding
You can add new targets to the project. The command equals to the Project | Targets ->
New menus of the Multilizer application.

The syntax of the add command is:
mlbuild a[dd] fileName [-type:X] [-q] project

fileName The target file to be added. The file name can contain wildcards (* and ?).
-type:X The target type:

delphibin Delphi binary file (.exe, .dll)
delphi16 16-bit Delphi project file (.dpr)
delphi32 32-bit Delphi project file (.dpr)
cbbin C++Builder binary file (.exe, .dll)
cb32 C++Builder project file (.bpr)
cpp C++ binary file (.exe, .dll)
rc16 16-bit resource file (.rc)
rc32 32-bit resource file (.rc)
rcce Windows CE resource file (.rc)
vbbin Visual Basic binary file (.exe, .dll)
vb16 16-bit Visual Basic project file (.vbp)
vb16ml 16-bit Visual Basic project file (.vbp) with Multilizer

components
vb32 32-bit Visual Basic project file (.vbp)
vb32ml 32-bit Visual Basic project file (.vbp) with Multilizer

components
vbce Embedded Visual Basic project file (.ebp)
If no type is specified MLBuild detects the target type.

-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example adds d:\MyProj\Project.exe target to the MyProject project file.
mlbuild add D:\MyProj\Project1.exe –type:delphibin MyProject.mpr

222 Multilizer 5.1 - Developer’s Guide

Scanning
You can scan the project to pick up the new strings by using the scan command. After
scanning, MLBuild saves the new items to the project file. If no new items are found the
project file is not touched. The command equals to the Project | Scan + File | Save or
Project | Smart Scan + File | Save menus of the Multilizer application.

The syntax of the scan command is:
mlbuild s[can] [-smart] [-q] project

-smart Scan only those targets that have been changed since the last scan.
-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example scans the targets belonging to the MyProject project file.
mlbuild scan MyProject.mpr

The following example equals to the above example but it does not write any output
expect errors.
mlbuild s -q MyProject.mpr

 Multilizer 5.1 - Developer’s Guide 223

Removing
You can remove the unused string from the project by using the remove command.
Selecting this command make the MLBuild to scan the project. If no unused items are
found the project file is not touched. The command equals to the Project | Remove
Unused Strings + File | Save menus of the Multilizer application.

The syntax of the remove command is:
mlbuild r[emove] [-q] project

-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example remove the unused strings from MyProject project file.
mlbuild r MyProject.mpr

The following example equals to the above example but it does not write any output
expect errors.
mlbuild r -q MyProject.mpr

224 Multilizer 5.1 - Developer’s Guide

Importing
You can import a Multilizer project file, a text file or a TMX file to the project by using the
import command. After importing, MLBuild saves new or changed items to the project file.
If no new items are found the project file is not touched. The command equals to the File
| Import + File | Save menus of the Multilizer application.

The syntax of the import command is:
mlbuild i[mport] file [-type:X] [-lang:X] [-separat:X] [-overwrite]
[-different] [-status] [-method:X] [-comment:X] [-columns:X] [-q] project

file The file (.mpr, .txt, or .tmx) to be imported. The file name can contain
wildcards (* and ?)

-type:X Specifies the type of the import file. See the Add command -type to get
the possible values.
If no type is specified MLBuild detects the target type.

-lang:X List of language codes to be imported. Separate multiple codes with
semi colon (;).
The code uses the following format: ll[_CC]
ll is the two character ISO-639 language code (e.g. en)
CC is the optional two character ISO-3166 country code (e.g. US)

-separat:X ASCII hex value of the column separator character of the text file.
Default value is 9 (tab).

-overwrite Overwrite the current values
-different Import the translation only if it differs from the native value
-status Import the translation status
-method:X Specifies how strings are imported:

0 By context
1 By native value
2 First by context then by native value (Default)

-comment:X Specifies how comments are imported:
0 No comments are imported
1 Comment is imported if the current comment is empty (Default)
2 The imported comment overwrites the current one

-columns:X List of text columns. If the imported file is a text file you must give the
columns. Separate multiple columns with semi colon (;).Language
columns use the same ISO code as the lang option.
The following special column can be used:
na Native column
co Context column
cm Comment column
ig Ignore this column

-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example imports Translated.mpr to MyProject.mpr.
mlbuild import Translated.mpr MyProject.mpr

The following example imports only the Finnish column. Overwrite the current values.
mlbuild i Translated.mpr -lang:fi;se -overwrite MyProject.mpr

 Multilizer 5.1 - Developer’s Guide 225

The following example imports all the text files in the current directory to MyProject.mpr.
The text files must contain the native, Finnish and Swedish columns:.
mlbuild i *.txt -columns:na;fi;se MyProject.mpr

The following example imports Translated.exe that is a Delphi binary to the German
column of MyProject.mpr.
mlbuild import Translated.exe -type:delphibin -lang:de MyProject.mpr

226 Multilizer 5.1 - Developer’s Guide

Exporting
You can export data from the project file to a text file or TMX file by using the export
command. The command equals to the File | Export menu of the Multilizer application.

The syntax of the export command is:
mlbuild ex[port] file [-format:X] [-lang:X] [-nocheck] [-nouncheck]
[-noempty] [-separat:X] [-context:X] [-quote:X] [-nosig] [-addcomment]
[-tmxver:X] [-tmxdtd:X] [-tmxcase:X] [-empty] [-nocontext] [-nocomment]
[-admlang:X] [-srclang:X] [-q] project

file The file (.txt, or .tmx) to be exported.
-format:X File format of the export file.

0 Ansi
1 UTF-8 (Default)
2 UTF-16, little endian
3 UTF-16, big endian

-lang:X List of language codes to be exported. Separate multiple codes with
semi colon (;).
The code uses the following format: ll[_CC]
ll is the two character ISO-639 language code (e.g. en)
CC is the optional two character ISO-3166 country code (e.g. US)

-nocheck Do not export translated and checked strings
-nouncheck Do not export translated but unchecked strings
-noempty Do not export untranslated strings
-separat:X ASCII hex value of the column separator character of the text file.

Default value is 9 (tab).
Note! This option is used only when exporting to a text file.

-context:X The position of the context column.
0 No context column (Default)
1 Context column is the first column
2 Context column is the second column after the native column
3 Context column is the last column
Note! This option is used only when exporting to a text file.

-quote:X The quotes that are used.
0 No quotes (Default)
1 Single quotes (')
2 Double quotes (")
Note! This option is used only when exporting to a text file.

-nosig No UTF-8 signature or UTF-16 byte order mark is written.
Note! This option is used only when exporting to a text file.

-addcomment Adds the comment column as the last column
Note! This option is used only when exporting to a text file.

-tmxver:X TMX version. The value can be from 1.0 to 1.4. Default value is 1.4.
Note! This option is used only when exporting to a TMX file.

 Multilizer 5.1 - Developer’s Guide 227

-tmxdtd:X DOCTYPE and DTD uage.
0 No DOCTYPE tag
1 DOCTYPE tag with locale DTD file name
2 DOCTYPE tag with DTD URL file name (Default)
Note! This option is used only when exporting to a TMX file.

-tmxcase:X The case of the lang-attribute.
0 Default case (e.g. en-US) (Default)
1 Lower case (e.g. en-us)
2 Upper case (e.g. EN-US)
Note! This option is used only when exporting to a TMX file.

-empty Enable writing of empty translations.
Note! This option is used only when exporting to a TMX file.

-nocontext Disable writing of context.
Note! This option is used only when exporting to a TMX file.

-nocomment Disable writing of comments.
Note! This option is used only when exporting to a TMX file.

-admlang:X The admin language. Default value is en.
Note! This option is used only when exporting to a TMX file.

-srclang:X The source language. Default value is *all*.
Note! This option is used only when exporting to a TMX file.

-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example exports Translated.txt from MyProject.mpr.
mlbuild export Translated.txt MyProject.mpr

The following example exports the translated and checked strings of the Finnish column.
mlbuild ex Translated.tmx -tmxver:1.3 -lang:fi -nouncheck -noempty
MyProject.mpr

228 Multilizer 5.1 - Developer’s Guide

Exchanging
You can exchange translations to the translator by using the exchange command. The
command equals to the File | Exchange menu of the Multilizer application.

The syntax of the exchange command is:
mlbuild exc[hange] file [-lang:X] [-nocheck] [-nouncheck] [-noempty]
[-dup:X] [-new] [-appfiles] [-name:"s"] [-des:"s"] [-author:"s"] [-q]
project

file The exchange file to be created.
If the file extension is .mlp the exchange package will be a compressed
ZIP file (having .mlp extension) that contains the project file and the
optional application files.c
If the file extension is .exe the exchange package will be an EXE file that
installs Multilizer and opens the project file.

-lang:X List of language codes to be exported. Separate multiple codes with semi
colon (;).
The code uses the following format: ll[_CC]
ll is the two character ISO-639 language code (e.g. en)
CC is the optional two character ISO-3166 country code (e.g. US)

-nocheck Do not exchange translated and checked strings
-nouncheck Do not exchange translated but unchecked strings
-noempty Do not exchange untranslated strings
-dup:X Specifies how duplicate strings are exchanged.

0 Exchange every instance of the string having the same native
value.

1 Exchange the first string plus every other string having the same
native value and different comment or maximum length (in
characters or pixels).

2 Exchange only the first string if several strings having the same
native value exists.

-new Exchange only the new string
-appfiles Exchange the application executable files.
-name:"s" s is a string that contains the package name.
-des:"s" s is a string that contains the package description.
-author:"s" s is a string that contains the author name.
-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example creates a setup package containing Multilizer application and all
the languages and strings of the project.
mlbuild exchange Translate.exe MyProject.mpr

The following example creates a Finnish package containing only the un-translated items.
mlbuild exc Translate.mlp -lang:fi -nocheck -nouncheck MyProject.mpr

The following example creates a package containing the new strings. If the string is
duplicate the first and those having different properties are exchanged.
mlbuild exchange Translate.mlp -new -dup:1 MyProject.mpr

 Multilizer 5.1 - Developer’s Guide 229

Translating
You can translate the project by using the exchange command. The command equals to
the Project | Translate | Translation Memory menu of the Multilizer application.

The syntax of the translate command is:
mlbuild t[ranslate] [-lang:X] [-first] [-q] project

-lang:X List of language columns to be translated. Separate multiple codes with
semi colon (;).
The code uses the following format: ll[_CC]
ll is the two character ISO-639 language code (e.g. en)
CC is the optional two character ISO-3166 country code (e.g. US)

-first Use the first translation when two or more translations exists. The default
feature is to skip all such translations.

-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example translates all the columns of the MyProject.mpr file.
mlbuild translate MyProject.mpr

The following example translates the English and German columns. Use the first
translation.
mlbuild t -lang:en;de -first MyProject.mpr

230 Multilizer 5.1 - Developer’s Guide

Building
You can build the localized file and/or the dictionary by using the build command. The
command equals to the Project | Build Localized Items and Project | Make Localized
Items menus of the Multilizer application.

The syntax of the translate command is:
mlbuild [build] [-make] [-q] project

-make Make operation. Build only those file that are older than the project file.
-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example builds the localized files
mlbuild build MyProject.mpr

The following examples make the localized files
mlbuild b –make MyProject.mpr
mlbuild –make MyProject.mpr

The following build file compiles the Delphi application and creates the localized files.
dcc32 -$D-L-Y- -U..\..\.. -I..\..\.. dcalc.dpr
mlbuild dcalc.mpr

 Multilizer 5.1 - Developer’s Guide 231

Creating a Sub Dictionary
You can create a sub dictionary by using the exchange command. The command equals
to the Project | Create Sub Dictionary menu of the Multilizer application.

The syntax of the translate command is:
mlbuild d[ictionary] file [-lang:X] [-q] project

file The dictionary file (.mld) to be created.
-lang:X List of language columns to be included. Separate multiple codes with semi

colon (;).
The code uses the following format: ll[_CC]
ll is the two character ISO-639 language code (e.g. en)
CC is the optional two character ISO-3166 country code (e.g. US)

-q Quiet mode. Write no output except errors.
projectfile Multilizer project file (.mpr)

Examples
The following example creates a Finnish dictionary.
mlbuild dictionary Finnish.mld -lang:fi MyProject.mpr

The following example creates a dictionary containing the Nordic languages.
mlbuild d Nordic.mld -lang:da;fi;fo;is;no;se;se_FI MyProject.mpr

232 Multilizer 5.1 - Developer’s Guide

Appendix A: Glossary
This glossary describes common terminology used in software localization and in
Multilizer. Multilizer White Paper contains a more comprehensive glossary.

Code page
A code page is a code array that maps the integer code to the character of the character
set. The first 128 items of every code page contains the ASCII characters. The remaining
items depend on the character set.

Windows 3.1 supports only one code page. It is the code page of the system and it is
bound on the language version of your operating system.

Windows 95 and Windows 98 support multiple code pages but only one can be the
system code page. It is bound on the language version of your operation system. It can
not be changed.

Windows NT, Windows 2000 and Windows XP support multiple code pages but only one
is active at a time. The system must be rebooted after a code page change.

Java, Windows CE, Symbian use Unicode so there is no need to use code pages.

Dictionary
Multilizer uses dictionaries to store the translation data. Each Multilizer edition contains
one or more dictionary components that access that data. In most cases all the
translation data of your application is stored in one dictionary. A dictionary component is
needed in component localization only.

Globalization
Globalization is the compound of tools and methods that are applied to software in order
to make it work globally. Thus, the globalized software works with the appropriate
features of each of the target countries.

Globalization can be seen as the sum of internationalization and localization: when
globalizing the software, it first has to be internationalized and after that localized.
Properly developed software targeted for many locales must go through both
internationalization and localization.

Internationalization
Designing and building products so they can be easily adapted into various target
languages and regions without requiring subsequent engineering changes. May often
include multi-byte character enablement work so that the application can be localized into
Asian languages. Also includes making an application aware of OS locale settings;
adding flexible font settings for display of various languages; externalizing strings built
into the application; and/or adding mechanisms to allow language-specific features to be
implemented more easily.

Internationalization "builds-in" language interchangeability at the early product
development stage. Internationalization is the successor to retrofitting-the old
methodology of simple linguistic translation after the product is finished.

However, internationalization tends to be used in the meaning of globalizing software.

Language IDs
The language ID specifies the language (e.g. English, Finnish, Japanese, etc.).

Multilizer uses Windows’s primary language IDs (e.g. LANG_ENGLISH), and Java’s
language codes as defined by ISO-639 (e.g. "en").

The country ID specifies the country of the language (e.g. English in United States,
English in Great Britain, English in Canada, etc.).

Language ID

Country ID

 Multilizer 5.1 - Developer’s Guide 233

Multilizer uses Windows’s sub-language IDs (SUBLANG_ENGLISH_US), and Java’s
country code as defined by ISO-3166 (e.g. "US")

Linguist
The linguist is the human translator who translates the project into the target language(s).

Locale
A locale is a combination of language and country IDs. In other word it is a language
spoken in a country (e.g. German spoken in Austria). There can be multiple locales for
one language. For example, English (United Kingdom), English (United States), English
(Canada), etc.

Localization
Localization is the act of applying country specific features to the program. The name is
derivative of locale, which is an OS-specified set of items of the target country's
denominative features.

Software localization aims to make the software reflect the target country's cultural
features, in order to make the software customer-friendly.

Some countries need several localized versions of the software. For instance, in Canada
there is a need to produce both English and French locale versions of the software.

Module
Module is a Multilizer component that translates the complex properties of one ore more
3rd party component. A Module component is needed in component localization only.

Translator
Translator is a Multilizer component that translates the form (window) from the native
(original) language to the active language just before the form becomes visible. Translator
uses the translation data provided by the Dictionary component. A Translator component
is needed in component localization only.

234 Multilizer 5.1 - Developer’s Guide

Index
.

.NET, 1, 15, 23

A

Arabic, 19, 81

B

BiDi, 19
Bi-directional, 19
Binary, 56
Build, 219
Builder, 6, 209

C

C#, 23
C++Builder, 15, 56
Canada, 21
Character sets

bi-directional, 19
double byte, 19
MBCS, 19
multi byte, 19
Unicode, 20

Chinese, 19
CLDC, 98
Code page, 221
Comment, 120
Component, 57
Components, 7
Conditional compiling, 125
Cyrillic, 81

D

Database, 15, 148
DateTimeToStr, 61
Dcalc

Palm, 127
Delphi, 15, 56
Deploying, 124
Dictionary, 221

binary, 78
sub, 220
test, 71

DLL, 65
Documentation, 3

E

Edit
Far Eastern languages, 21
Middle Eastern languages, 21

Embedded Visual Basic, 16, 47
Embedded Visual C++, 16, 34
Emulator, 128
English, 79, 83

Enterprise, 1
Exchange, 217
Export, 215

F

Far Eastern, 81
Finland, 79
Finnish, 79
Format, 61, 63
Forté, 83
French, 21

G

German, 19
Globalization, 221
Greek, 18

ancient, 18
modern, 19

H

Hebrew, 19, 81

I
I18N, 119, 129
ID

country, 221
language, 221

Idioms, 19
IME, 21
Import, 213
Installation, 2
Installation file, 124
Internationalization, 5, 25, 37, 51, 58, 71, 100,

119, 129, 143, 221
ISO, 175
ITE, 70

J

J2ME, 15, 98, 130
J2SE, 98
Japanese, 19
Java, 1, 15, 83
JBuilder, 83
JDK, 83

K

Kilometer, 61
km/h, 61
Korean, 19

L

Lak, 19
Languages

Far Eastern, 21
Middle Eastern, 21

2 Multilizer 5.1 - Developer’s Guide

Western, 20
Latin, 19
Lezgi, 19
Ligature, 19
Linguist, 222
Locale, 222
Localization, 5, 222

binary, 8, 56
component, 12
component, 57
database, 12
document, 11
file, 8
resource, 10
source code, 10

Localized application, 6

M

Maximum length, 177
in charcters, 120
in pixels, 120

MBCS, 19
Metric system, 63
MIDP, 98
Mile, 61
Module, 222
mph, 61
Multi byte, 19
Multilingual application, 6
Multilizer, 6

O

Oracle, 1, 175
Oracle Forms, 15
Overlay, 127, 133

P

Package file, 124
Palm, 16, 127

emulator, 128
internationalization, 129
overlay, 127
simulator, 128

PowerJ, 83
prc, 127
Project

Creating a new, 184
Project Wizard, 29, 43, 52, 66, 86, 102, 120, 130,

136, 143, 174

R

Registration, 3
Remove, 212
Report, 173
Resource bundle, 84
Resource file, 35
Resource files, 69
Resource string, 58

S

Satellite Assembly, 33
Scan, 211
SDK, 24
Series 60, 119
Simulator, 128
SLS, 173
StreamServe, 16, 173
Sun ONE Studio, 83
Support, 3
Swing, 97
Symbian, 16, 117

emulator, 118
internationalization, 119
preprocessor, 118
resource compiler, 118
SDK, 118

System
registry, 66

T

Tag
exclude, 120
include, 120

Target, 210
Translate, 218
Translation memory, 14
Translator, 71, 222
Translator edition, 17

U

Unicode, 20, 221
USA, 61, 63
UTF-8, 99

V

VCL, 1, 56
Visual Age, 83
Visual Basic, 16, 47
Visual Basic .NET, 23
Visual C++, 16, 34
Visual Café, 83
Visual J++, 16, 106
Visual Studio .NET, 15

W

WAP, 16, 141
Windows

2000, 221
95, 221
98, 221
Arabic language edition, 21
Far Eastern language edition, 21
Far Eastern language editions, 21
NT, 221
XP, 221

Windows CE, 34
WML, 16
WMLScript, 141

 Multilizer 5.1 - Developer’s Guide 3

X XML, 16, 135

	Introduction
	Multilizer naming conventions
	Tutorials for different platforms
	Conventions used in this book
	Installation
	Documentation
	Registration
	Technical Support

	Part I: Getting Started
	Overview
	Internationalization
	Localization

	Localization Technologies
	File Localization
	Binary Localization
	Resource Localization
	Source Code Localization
	Document Localization

	Component Localization
	Database Localization
	Comparing Different Application�Localization Technologies
	Unique architecture
	Translation memory

	Platforms and editions
	Supported tools, operating systems and documents
	.NET and Visual Studio .NET
	Databases
	Delphi and C++Builder
	J2ME
	Java
	Oracle Forms
	Palm
	StreamServe
	Symbian
	Visual Basic and Embedded Visual Basic
	Visual C++ and Embedded Visual C++
	Visual J++
	WAP
	XML

	Multilizer Setups
	Multilizer
	Multilizer Translator Edition

	Coping with different languages
	Character sets
	Single byte character sets
	Greek
	Latin

	Multi or double byte character sets
	Bi-directional character sets

	Unicode
	Single-byte and double-byte character set trouble
	Universal character encoding system

	Text Input
	Western languages
	Far Eastern languages
	Middle Eastern languages

	Country specific items
	More about localization

	Part II: Tutorials
	.NET
	Visual Studio .NET Project File Localization
	.NET Resource File Localization
	English Application
	Internationalization
	Internationalization of forms
	Internationalization of code

	Creating a Project
	Translating a Project

	Visual C++
	Binary Localization
	Resource File Localization
	English Application
	Internationalization
	Creating a Project
	Translating a Project

	Visual Basic
	How to use Multilizer
	Localization process
	Source localization
	Windows
	Windows CE

	Binary localization
	Component Localization
	English Application
	Internationalization
	Creating a New Project
	Translating a Project

	Delphi and C++Builder
	Binary Localization
	Component Localization
	English Application
	Binary Internationalization
	Creating a Binary Project
	Translating a Project
	Integrated Translation Environment
	Controlling What Properties Are Localized
	Component Internationalization
	Creating a Component Project
	Using Run-time Dictionary

	Java
	Opening a Monolingual Application
	Resource Bundle Localization
	Resource Bundle Internationalization
	Creating a Resource Bundle Project
	Translating a Project
	Localization with Multilizer Components
	Making the Application Multilingual
	Creating a Component Project
	Component Internationalization
	Changing Language at Run-Time
	Writing Multilingual Applets
	Writing Multilingual Swing Applications
	Font Issue with Non-Western Languages

	Java Micro Edition
	J2ME Localization
	Application With An English User Interface
	Internationalization
	Creating a New Project
	Translating a Project

	Visual J++
	Open a Monolingual Application
	Make Application Multilingual
	Create a Project for the Application
	Translating a Project
	Internationalize Your Code
	Change Language at Run-Time

	Symbian
	Symbian Localization
	Application Using an English User Interface
	Internationalization
	Creating a New Project
	Translating a Project
	Deploying
	Conditional Compiling

	Palm
	Palm Localization
	Application With An English User Interface
	Internationalization
	Creating a Project
	Translating a Project

	XML
	XML Localization
	English File
	Creating a New Project
	Translating a Project

	WAP
	WAP Localization
	Application with an English User Interface
	Internationalization
	Creating a New Project
	Translating a Project

	Database
	General Considerations on Database Contents Localization and Used Terminology
	
	Security
	Choosing the right connection type
	Architectures
	Existing Data
	Used Terminology & Icons

	Field and Table Naming�Conventions and Restrictions
	Fields Localization
	
	Examples

	Tables Localization
	
	Examples

	Single Table Localization
	
	Examples

	Creating a New Project with Localized Fields
	Creating a New Project with Localized Tables
	Creating a New Project with a Single Table
	Translating a Project

	Oracle® Forms
	Main differences between Oracle Translation Manager/Builder and Multilizer
	Choosing the right native language
	If your native form has been previously localized using OTM you should make sure that your NLS_LANG environmental variable is set to the correct value before scanning it with Multilizer. Multilizer relies on Oracle Forms API for certain functionalities a

	How Multilizer localizes fmb files
	Multilizer project versus Oracle Translation Manager/Builder database
	PL/SQL code localization

	Oracle Forms Localization
	Creating a New Project with Oracle Forms
	Translating a Project
	Importing Translations From OTM/OTB into Multilizer’s Translation Memory

	StreamServe
	StreamServe Localization
	English File
	Creating a New Project
	Translating a Project
	Tagging

	Translating a Project
	Adding Languages
	Changing the System Language
	Windows XP
	Windows 2000 and Windows NT
	Windows 95, 98 and ME

	Part III: Using Multilizer
	Globalization Process
	Globalization team
	Background
	Team members
	Tasks

	Work-flows
	Enabling concurrent work
	Localization type

	Internationalization
	To do’s
	Creating a new project
	Specifying the target type
	Specifying a file target
	Entering project information
	Selecting languages used in the project
	Adding Targets
	Finishing the Wizard

	I18N essentials
	Source-code globalization
	Component globalization
	Binary globalization

	Localization
	To do’s
	Preparing a project to be outsourced
	Adding visual context
	Adding comments
	Locking strings – preventing translation of strings
	Adding project strings
	Adjusting scanning options
	Updating the project file
	Scanning

	Pre-translation

	Building a Localization Kit

	Translation
	Build localized software
	To do’s
	Importing translation to a project
	Starting the Import Wizard
	Specifying import properties

	Build localized software versions
	Binary localization
	Source localization
	Component localization

	Quality Assurance – QA
	Test languages
	Cell highlighting
	Translator components

	Translation Memory on database server
	General considerations
	Database related tasks
	Create new database
	Define Connection parameters
	Connecting from Multilizer to MTM

	Managing MTM rights
	
	Translate Access
	Translate and add access – Full access

	Builder Command Line Tool
	Adding
	Examples

	Scanning
	Examples

	Removing
	Examples

	Importing
	Examples

	Exporting
	Examples

	Exchanging
	Examples

	Translating
	Examples

	Building
	Examples

	Creating a Sub Dictionary
	Examples

	Appendix A: Glossary
	
	Code page
	Dictionary
	Globalization
	Internationalization
	Language IDs
	Linguist
	Locale
	Localization
	Module
	Translator

	Index

