MULTILIZER

THE SOFTWARE| GLOBALIZATION COMPANY

Multilizer Localization Guide

Multilizer® 6.0 Localization Guide
February 2004
Copyright © 2004 Multilizer Inc. All rights reserved.

Multilizer is a registered trademark of Multilizer Inc. All other trademarks and registered
trademarks are the property of their respective owners.

Table of Contents

Introduction
Wse of thisS MaNUAl ... 7|
MUILIHZET PrOTUCES ... eeee e 7]
TS e 8|
USEIUL INKS....eeiieieeiieeseesetseeeetsseeeiesteeeeeateseesresesereaseesesareaesareanens 8|
Multilizer Support and MainteNaNCecceeeecvvvveeeeicriereensinennen. 9|

Part | — Multilizer localization process

CIEALE PIrOJECT.....ccee e 11|
Multilizer Project, MPRcouiiiiiiiiiiiieiieeieeieeieeieesieeseesseenneas 11|
Arranging the files to 10CalIZEcccoevcuveeeciieiceeeecireeenenn, 11|
ProjeCt Wizard............ccoouuueeeeieeeeiiieeeiiiiiieeeeeeeeeeeieeaeee e e e 12|

TArQet tYPE .oveiiieceiisseee e 12|
SN 13|
| SR - 14|
I S e 15|
INFOIMALION. ..ottt e et e e s e e e eeeneeeeeeeans 15|
I 16|
| ST 17|

Project MaiNtE@NaNCE.............ceeieeeeeeeeeeeeeeeeeeeeeeee e e eeeeaaaane. 18|
INErOAUCHION ..ottt e et e e et e e e eaaeeeeanns 18|
PrOjECt VIBW ... e eeeees e ses e eessreareareans 18|

| A 19|
Translation WOrK-PIACEccuvveuieieeieeeiieieieesieeeieeetiieseesesiieeeeeeeenns 22|
[NfO PAGE. ..o 23|
RE-SCAN PrOJECT ...t e e e e e e e eeaneen 25|
CALEOONIES ...t eeeeaeeeteaeenteeeeseeans 25|
Pre-translate PrOJECE.............ooe.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneannnne 25|
Franslate using Translation MEMOIYc....coocuueeeviueeeeieeiieeserereessereeeens 25|
[mport translations from files and databasesccocooveeevicviicieenneeen. 26|
Prepare project for translation..................ccooueeeeeeeeceeeeeeeinnaann. 26|
| YA Ta T PO 26|
Pseudo languages = QA ... 26|

| A E N = e e 26|

IR B R e T 26|

[Share translation WOrK..............cccuuveiiiiiiiiiiiiiieieieeeeeeeeeaeeae e 27|
INEOAUCTION ... eeeeeeeeeeeeeaane 27|
| R i 27|
EXchange Wizard..............ccooecuuuueeeeiiiiieeeeeiee e, 28|
Creating LOCAZAtION Kit............ocueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerereeenesnnasa 28|
Exchange Wizard STEPS.........c..cecuueeeueeeeuieeeieeeeieeeeeeeeieeeeeeeteeeenieeeeneens 29|
EXPOM WiZAID ...uveiveiieiieeeieceecieeeeeie e st sie e ete e areaneesreannees 33|
EXDOI WIZAIA STEPS ...eeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeneeeneneesnneeenneeennneesn 33|
IMPOIt WIZAN. ...t ee e 37|
[mport Multilizer Project (MPR)oviviiiiiiiiiccesss e 37|
IMport from Other TOMALS...........c.oeecuuieiiiieiiieciieietiiesieeeieeetiiesetieeseeeans 38|
A G RS T 38|
Dptions for typical file IMPOIScc.ocoeeeieieiiiieieiieiiieeeireeieietiraennn 40|
[TTANSIALEviieiiieiieie i eteeeesetee s iee et ssteeeeseeeessreesseeresnsesesaseesreareeeeareanes 44|
RESHICHONS ...ttt et eeteeseeereeseeeeesreeeeaseasseaseans 44|
[Translation WOrK-PlACEc.uueeeiveueeieeieeiieeeeeeeeeeeeeenraeann 44|
Belecting visible COIUMNSc.veecuieeeieeeeeeeieeeeeeeeeeeeeeeeeeeeeeea 45|
SR 46|
Translation grid OPLIONScc.vveeuveeereeetieeetieeeeteeeeieeeieeeeteeeeeeeeveeennes 48]
Misual EQIOIS, WYSIWYQ ... 49|
Visual Editor (WYSIWYQ) SEHHNGScocvveeeeeeeeiieeeiiieeieeeiieeeeeeeteeeveen 50|
LOCAliZAtION OF SUINGS.vveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennannns 51|
Localization of aCCEIErators.civiiiiiiiiiiiiiiiieieeieeieeveennies 51|
Localization Of IMAGES.ccuueeeeeieiieeieeeeeeeeeeeeeseeereeernn 52|
Localization of AVI and other custom reSoUrCeSccoevereveneanes 53]
[Software translation SPECIfICS...........cc.uuveeevicuveeeeeiiiiieeeeeirivreeannn 53|
Characters with a Special PUMPOSEcoeeeeeeeeeeeeeeeeeeeeeeeeeeeveenesennana 54|
Maximum length of translations..............c...cccueeeveeieieecieeeeeeeieeeieeerenns 54|
[Translation Memory MainteNanCec..uueeeeeeeeeeeeeeeeeneerrann 55|
Sending back translationsuueeeieeeeeeeeeiieeeeeeeeen. 55|
[TranSIation MEMOIYvveeeeeeeeiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeaans 56|
Tl re Yo [VTe e T T 56|
Ensuring the Translation Memory quality..............cccuevverevesinresrenennne. 56|

Using Translation MEMOIYc...cocueieuueeieueeieieeieieieireeeeeseeeessneeesieeeaas 56|
Einding Translationsccooovivieiiiicceeesee s 58|

Installation of Multilizer Translation Memorycccuu........... 58|

Create Local Translation MEMOIYc.c...ccueeeeureicueeieieieieeeireseineseneans 59|

[Create Server Translation MEMOIYccuveeveiiieeseeeseieeseeesieeeeseeanns 59|
[SEOre traNSIAtIONS ...t eeee e eeeeaeeaane 60|
Bave project tranSIatioNScccuueeeeiuieeeeeiiieeeeiieeeeeieeeeeeieeeeeeiveeeen 60|
IMPOIt AOCUMENES ...t eeeeeeeeeeeeneeaeeean 61|
BEOMENTALION ... eteeeeteeeeneeeeeteeeeneeas 62|

BIOCK WOTAS ...t eeeeaan 62|
IMAINTENANCE ..o eeeeeteeeeeeeneeneeeenns 62|
QUAIIY ASSUIANCEvieiieiieieiiteeeeiiteet et ets et et s st et ere s esaessesanesseeranis 64
Validation Wizardcooeeiueeeiiiiiiiieeeeeeeeeeee e 64|
Y e e 65|
Working with validation reSUIScoccoieviieriieiiciesseesceesceesicereeeenanes 66|
PSeUdO LANQUAGES ...t eeeeeeeeeeaeeaaaaann 68|
N 68|
MINIMUM e 68|
L R e 68|
Informative QA fEAtUIEScocviiiiiieieieeeeeeeeeeeeee e 68|
Il COIOMNG ... 69|
Display of non-printing Characters..............cc..ccuveecveeeieeeieeeerieeereeennnnn. 69|
e L 69|
Control boundary COIOISccueeeuieeciieeieeeieeeieeeeeeeeeeeeeeeeiena 69|
I S 69|
Bet status aULOMALICAIYcoueeeeeeieieieeeeeeeeeeeeseeeeeeeeeneseeeaeneas 70|

Bet status ManUAallYc..eecveeiueeecieecciieeeee et seeeeivee e 70|
REDOIES ...ttt e e s s eeeeeaesaeneeeneasennns 71|
PrOJECE TEPOIS ...t eeeeeeeeeneesteneeneeens 71|
e X e =T e T T v, 71|

Y T N e 72|
Build 10calized VErSIONScoeiviiiiiiiiiiiiieeeeeseeeeese e 73|
HOW d0ES DU WOTK ... 73|

Part Il — Tutorials

WINAOWS TULOAI ...t 75|
YR 92|
NER 117|
DAVA TULOMA ...ttt e e e eeeaeeseenneeeaas 140)|

(N SR 148]

Database TULOMA!c...coeuueeieiiieiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeaan 157|
Y TR T 163|
Source Localization TULOMEIc.eieviieeiiiieiiieisieeiesieaissieaieeireaneas 167|
Data File Localization TUEOralc...ceeuieuuieeeeiiiiiieeiiiiiieessiiienaanns 169
Part Ill — Appendices

[TNAEX. i e e e e e e 174|
IR N e 176|
S s A 179|
BUPPOIE filE TYPES ...t eeeeeeeeeieeeeas 181|
Localization Walkthrough Quick Reference...........c.oceveeveveeievenennene.s 183]

Multilizer Localization Guide 7

NOTE!

Introduction

Use of this manual

Multilizer 6.0 Localization Guide covers the entire Multilizer localization process. It serves
as reference for localization engineers, project coordinators, and software engineers, and
others using Multilizer for software and content localization.

The translators’ tasks are covered in the chapter “[Translate]” p.

Multilizer products
The manual covers all Multilizer 6.0 products:

e Multilizer Enterprise

e Multilizer for Windows

e Multilizer for NET

e Multilizer for Visual C++

e Multilizer for VCL

¢ Multilizer for Java

¢ Multilizer Translator Edition Pro
* Multilizer Translator Edition

The abovementioned Multilizer editions have all the same basic set of features, including
a uniform way of working and user interface.

Multilizer products differ in two aspects:

e Support for Process features.
There are different Multilizer editions depending on the major tasks in the localization
process. For example, the translator uses Multilizer Translator Edition and the QA
person uses Multilizer Translator Edition Pro.

The Multilizer localization process forms Part | of this manual.

e Supported software platforms and contents.
There are different Multilizer editions with different support for platforms. For
example, .NET software can be localized with Multilizer for .NET; and if database
localization is also needed, then Multilizer for Windows or Multilizer Enterprise is
required.

Software platform and content-specific tutorials form Part Il of this manual.

The following table summarizes the differentiating features:

Multilizer Localization Guide 8

MORE INFD

NOTE!

2 £
'&{g) §’“ §Qv ¢ & 0
& SFLO s e
S8 LE
N N N N N N N N
S ST I JT IS SIS I
S S SS S S S S
Process features
Create Multilizer localization project VIV IV Iv IV |V
Scan software/content to include localizable
data in Multilizer project viIv i v IvIv|v
Translate Multilizer localization project v IVIVIVIVIVIVI]Y
Build localized versions viiviiviiviivi|v|v
Create localization kits v IV iIvIv IV]V
Multilizer TM installs on database server v
Multilizer TM installs on desktop database |v |V
Built-in single-user TM database viiviiviiviiv | iviiv]v
Supported software platforms and contents
.NET v v |v
Windows v |v v |v
Windows CE v | v
Java v |V v
Desktop databases v | v
Server databases v
Data files v |V IV IV IV |V

Process feature differences are explained in depth in Part | of this manual.

More specific info on supported software platforms and contents is available in the
tutorials in Part Il of this manual.

See appendix ‘Support file types’ for a comprehensive list of supported file formats.

Installation

Multilizer is installed either from CD or directly from the Internet. Refer to the instructions
of installation software for details.

On installing the commercial version of Multilizer, remember to enter the serial number
during installation.

Useful links

The Multilizer website offers useful services both for evaluation version users as well as
users of the commercial version.

Multilizer Localization Guide

MORE INFD

http://vww. nul tilizer.com downl oad|

Full setups, patches, and
updates of all Multilizer
products.

http://ww. nul tilizer.conm support|

Support pages. Check out latest
technical news and notifications
of Multilizer products.

Customers can register
Multilizer product here, in order
to get extra services on
Multilizer support pages.

http://ww. nultilizer.conl support/docunents|

In documents, you can find links
to software localization-related
documents, Multilizer fact
sheets, in-depth articles of
Multilizer technology, etc.

Multilizer Support and Maintenance

Multilizer users can subscribe to Multilizer Support and Maintenance Agreement (SUMA).

SUMA includes free upgrades and support.

There is always a separately agreed amount of free consulting included in SUMA. This
consulting is highly recommended for companies that want to achieve all benefits that

Multilizer technology can bring in their particular cases.

For more info, please contact Multilizer sales: pales@multilizer.com|

http://www.multilizer.com/download
http://www.multilizer.com/support
http://www.multilizer.com/support/documents
mailto:sales@multilizer.com

Multilizer Localization Guide

10

This part goes through the typical tasks of the Multilizer localization process.
Each chapter in this part starts with a short description of:

« Multilizer editions that support the specific task.

* Multilizer user’s role in the task.

e Wizards that guide the user.

Multilizer Localization Guide 11

NOTE!

Create Project

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

User’s role in process: Localization engineer, Localization project
coordinator, Software developer

Wizards: Project Wizard

Multilizer project, MPR

Before anything can be localized with Multilizer, a Multilizer Project (MPR) must be
created. Thus, the first task in localizing software is to create it.

Each Multilizer project can contain 1...N localization targets. Each target contains 1...N
files; a target can be software executable, a .NET solution, a directory with property files,
or database, just to name a few.

Multilizer project keeps all information needed in localization, such as list of targets along
with native (source) language. In addition, target languages are included.

The core idea of working with the Multilizer project is to maintain always the same project
file; therefore the project should be created only once. In order to keep the Multilizer
project and targets synchronized, you can force Multilizer to scan targets; this is called re-
scanning (= Re-scan project} p. . Re-scan checks if there are any changes in targets;
any changes are flagged in the project so that the user easily sees the changes.

Arranging the files to localize

Because scanning targets involves synchronizing files to localize with the project file, you

should arrange the files to localize so that they are always located in the same folder.

Access to the folder must be granted to enable the following Multilizer tasks: create

project, scanoject (>Re-scan project] p. §5}, and build localized files (>[Build localized |
ions] 3

yersions| p.

Other tasks operate the Multilizer project only.

Localized files are created in folders below the original files. The name of the folder is the
same as the locale ID. If the localized file is multilingual (e.g., multilingual EXE), it is put in
the folder called ‘all.!

Multilizer Localization Guide 12

NOTE!

The following picture illustrates the files and folders created for a sample ‘notepad.exe’
localization project. In this example, there is only one target (notepad.exe) and by default,
Multilizer creates the project (notepad.mpr) in the same folder.

?C:
i

é—E My project
|

Notepad.exe .
Files and folders created

by Multilizer with "build’
command.

g

n

Notepad.exe
f

Notepad.exe
—F= Notepad.exe Original non-localized file
— Notepad.mpr Multilizer project

Bl

Figure 1: Organizing the files to localize.

Upon building localized versions, Multilizer creates ‘all,” ‘en,” and ‘fr’ folders with localized
copies of notepad.exe. In this example, Notepad.exe is localized to a multilingual version
(in ‘all’ folder), an English version, and a French version.

Project Wizard

Project Wizard guides the user in creating a new project, in order to ensure that required
information is included in the project.

The screenshots in this chapter are taken from a simple Windows software localization
project. To know correct settings for a specific platform or database, check out the
respective tutorials.

Target type

The first screen prompts the user to choose between file and database localization. You
should choose ‘Localize a file’ if you localize any software or content files, such as XML
or INI-files.

Multilizer Localization Guide 13

xl

T wizard mall guade o i cosate & resss Multiloes piopscl Follioes Hee Fstructions § gives soi Press F1 or e Hesip baotion 5 o lins o
ol e . B N et il wakaid & b el b i D O] Baillein

T bl £ i b oalinc? B il Ranged Lo ba localisad Yiou can oalic? ethad a Nle or & datalarn. Paict P apgioiribs bulor,

Lk & fis. Mulies pappots: peveral fis formety such as application e, compls: prosect e,
H D D008 s resowne s sod dais flss
Lecalise aF
E

Locakre & detsbems Hullios narebites the sebsoted Saldy bom the sslscted debabase bsblss.
Locskrs a [ialshass

Help | Bt | b c.,nil

Figure 2: Selection between localizing file and localizing databases.
Regardless of what you choose as the target type, you can always add different targets

afterwards. Upon finishing Project Wizard, you can choose Project->Targets... to see
and maintain a list of targets.

File Target

The next screen asks you to specify the file(s) to add in the project.

Project wheand Fle Tariet =

Sadesct e s b s bncinkose] e e s o s e
| 1 otepad =&
Barw ~ | Sizw | Tipes | Hodfied |

—lan Fis Folser Z2.0,2003 1458

Cles Fée Foddits 22,8203 14580

16 Pils, Poldier 2202003 1458

i Fie Fokder 2282005 1459

1k Pis Frider Z2.0.3003 1500

Cemlesct Ippes of =g o hipes o palkcd cad bilep

P.l:qprll!ﬂl‘in j

Figure 3: Specifying files to be included in project.

Multilizer Localization Guide

14

)

NOTE!

If you select multiple files, we recommend that all files are of the same platform type and
target type. You can ensure this by selecting type of files from the combo box.

You can add different platforms and target types later to the project. This is done either
directly in project tree, or from Targets dialog (Project>Targets...).

Select file type

If you localize software/content of a specific platform, select ‘Select file types...” from
combo box. It activates a dialog that allows user to choose platform and file type.

Fl
T (o]
M 1= Wofiredoess by il
Lo Pr— I ol Batic binasy e Cancel
™ fafirdosss CE ™ Disiphi by e Help |
r [CasBusidai by s
L ™ Nfindosss resmusce lils
T Jiva
" [ata

Figure 4: Specifying file type.

File type

If file type was not defined on previous page, certain files require specifying it on this
page.

This page is not shown, if file type was already specified or selected file can be localized
in only one way.

This is the case with Windows executables for instance; an executable is localized
differently, depending on the type. This is due to the fact that for example Delphi binary
file differs from standard Windows binary file.

Selecting file type ensures that localization is performed correctly on selected file.

Multilizer Localization Guide 15

Project Wizand - File Tvgss El

Semlacd T [l 1o o "B DhamnnetapadP D TERAD EXE™

Co-Euldes barap T
Daliph barvary Ala

R

[T S ol Bl Bypene

Hee | Box [e | Coreel_|

Figure 5: Specifying file type.

Target options

Depending on the selected target platform and type, the next screen allows the user to
specify localization-dependent options for the target.

The available options for each target platform and type are discussed in the tutorials
(See: Target Options in each tutorial).

MORE INFD .
Information

The next screen lets you enter information that identifies the project.

Multilizer Localization Guide

16

Emiet Hhes st nformesion sisk 2 Sulfor, Glganipsson and e Dol desiphon.
= e

[Tovtvom
Diparalon

[T et
Deprption

[res piopc]

ey | B [b]

i

Figure 6: Specifying project information for new project.
Languages
On the next screen, you have to specify target languages for the project.

i B barpiaagesy Fradt wodi sl b supoorl “Viou o beber e mess banguages.
Er-alabla |arepmaz

- Enphih
E sloresn
F msripass
Fam
Foregh
B Franch
Cirsrgean
Barris
Coirruirp
Lisichbarwtan
Leminbeiang
5 iy L]
Gietk
Hithisa
Hire
Hungeiss
|iabaruces
I e casn
B Ihelan
Japsanase .:l

_ b |

L

xl

G eactod largruagaz
2 e | —— |

B
Beeoas

i

‘

Figure 7: Selecting languages for project.

Drag and drop desired languages to the right-hand side to select them.

It is preferred to add languages instead of sublanguages (language + country).
Sublanguages should be added only if there are country-dependent translations for the

target language.

Multilizer Localization Guide 17

TIrl

You can add default languages for new projects. Choose
Tools>Options>Environment->Default languages... from the Multilizer main menu to
specify languages that should be automatically selected in new projects.

If there are languages that are not included in the list, you should continue and finish the
project. Then add custom languages (Tools->Languages and Locales...). After defining
custom languages, you can add them in your project (Project->Languages...).

Finish

The last screen lets you go back and modify settings.

Finish button will create the Multilizer project, and scan the files to localize. Scanning will
pick the data to localize from the files to localize and store them in the Multilizer project.

Multilizer Localization Guide 18

Project maintenance

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

User’s role in process: Localization engineer, Localization project
coordinator

Wizards: Scan project
Translation Memory

Introduction

There are three main tasks to do in maintaining the Multilizer project:

e Check if software/content to localize has changed; if it has, synchronize it with the
project. (->Re-scan project p.

« Pre-translate project (= p.
* Prepare the project for translation. (= p. @

Project View

When a Multilizer project is created or an existing project is opened, Multilizer shows it in
Project View. All project maintenance tasks are done within Project View.

Project View consists of project tree, translation work-place, and Info page.

Multilizer Localization Guide

19

Bl Bt Mew Projed Couen Bow Tk Hep

OFH B8 2 e AE B 8| " -

101 =

- = | —— o
=1 @ F - \Democinobepad
—

=1 ‘=d Accelnratore

B MAIMALCT

T SLIPUPALE
= " L ier e

En

= R

=4

B HPSAYEDIA
= ‘A Igons

D4

* ok |
rI'Jnn-\.m.l

Bz Conlexl Hadive English

A 3 Tes Goto Ine
s 1 Texi oK

ﬂ : : 2. Tawxl Cancel
O

. T

i B]
CIR ~ P T
FI
Sean
Chmtee 3.2 0068 11063 783

D | 'jl:llnm.
Se fla"E - \lerarinclspsdien ™™ OTEPAD ESE"
[[==] E

Log [B Veiden | 3, Seistics |
T |] | ok rmat

Figure 8: Multilizer project view, with project tree, translation work-place (translation grid and

visual editor), and info page.
Project Maintenance tasks are done on three levels:

e Project level
Project maintenance is done from Project menu.

e Target level

Target level maintenance affects the way of localizing individual targets, such as
output of localized files. Maintenance of targets is done either in Project Tree or by
choosing Project->Targets... from the main menu (= p. [L9). Further
platform-dependent options that may affect localization of targets are found in
Tools>Options in the respective platform settings.

Translation level
Translation level maintenance is done in Translation work-place. Besides editing
translations, strings can be locked, hidden, and much more. (= [Translation work-|

blace] p. p2)

Project tree

All targets of the project are shown below the root node (‘all’) of the project tree.

Translations of each target are grouped by resource type, file name, or other way,
depending on the target platform and type. These groups are shown as nodes below
each target.

New nodes are shown in bold. Nodes that were removed from software are shown in

blue. (> b. F5).

Multilizer Localization Guide 20

TR =0l =l

Bie e fwwn Promc: oken fow [ook feh
ODFd B& Le A8 GHE R ke b

i = | ——
=) D e ot egead
= o Aceleapiong a |

B MAMALCT

B LLiPUPACT
= =4 Dialogs »

= 1

=z

=114

B ursavEDia

A lcons

[R

@z Conta | Mative | Englsh |

j 3 Taxl Goto-ine

D4 { Taxi I

ﬂ : o) 2. Taxl Cance

Br

Ciw —

] e

i J.‘\.hr:u HLI

Elapead wrer 371 mr
Silep: 10

[w2 | I I Mot ready I r

* ok |
'tm||

L+ I

Figure 9: Project tree with mainform resource shown in bold.

By clicking any node, the translation view is automatically updated so that the
corresponding content is shown in the translation grid.

By clicking nodes of a certain resource type, Multilizer shows both the translation grid and
a WYSIWYG (what you see is what you get) view of the resource. Resources that are
shown in WYSIWYG are:

« Dialog (form) resources

* Bitmap resources, including cursors and icons
¢ Menus

e Frames (VCL, Delphi & C++Builder)

In addition, Multilizer shows in Wysiwyg the following file types:

« XML
* Source code
« Bitmaps and source code embedded in XML.

Modifying targets

Targets can be modified, added, and removed from project tree. This is done either from
a pop-up menu (right-click project tree to show) in project tree or from Project menu
(Project>Targets...) in the menu bar.

Multilizer Localization Guide 21

£ Cfluider and Deiphs § paoject growp fils EStmetifdeabe. bedrpowp
G ial Dby WET propich e CoProngidin i llilies BN D cale’ ook al

Uidilie

|:1-:||:m|uuh

Figure 10: Dialog displaying project targets (Project >Targets...)

. Chgsing Add... will add a new target using the Project Wizard (c.f.
p. [L2).

* Choosing New... will add a new target by allowing the user to select target type from
the list (= See next picture) and specify the location of it.

e Choosing Edit... will show target-specific localization options. The settings of these
are platform- and type-dependent, and they are discussed in the tutorials.

« Choosing Remove... will remove the target from the project. All strings associated to
it will be in the project until you explicitly remove them by choosing
Project>Remove Unused Strings.

Multilizer Localization Guide 22

x

ﬂ KET arrembly s
oy WET imanmce e

Ll gl wnd [1siphi 3 pacisci ks
|ﬂ CovsBluscier tanady fia
5 Daishace
B Dok Laraap T
-'*- Iri Fila
3 Jren mchive il
ﬁ" Jaem msnurce Hs
ol 10 uicker piject Rl
51 Koy il
S| Sousoe oo fke
o T
08 Wirikow by e
OB Wiradow msturcs il
‘h_ Yial B ey s
0 Vinusl Saedio WET prosct e
@0 Vil Sk MET sobabon fis
[L e

[ok | come | sew

Figure 11: Adding new target by file type.
Translation work-place

Translation work-place shows the localizable information associated to the selected node
in the project tree.

Multilizer Localization Guide 23

~inix
Cim [dt e Project Coben fAow ook el

LY L LI N =l »

i A ——— o
=) D e ot egead
- 24 farcelealong o ri) |
. wrnl

B MAMALCT

B SUIFIPACT ':_l
= =4 Dialogs

= 1

Bz

=l

B nrsavEDia

I3 lcons

R

@z Conta | Mative | Englsh

j 3 J & Tex Goto-ine

R 1 Taxl (K

2. Taxl Cance

=

[
L=

Bw —

] e
+ (0 58 =
1 I| k|

Elapead wrer 371 mr
Silep: 10

[w2 | | I | Mot ready | Jr

Figure 12: Translation Workplace; translation grid and visual editor.

Translation work-place shows a translation grid for editing properties of localizable data
for translating. If a specific resource type is selected in project tree, Multilizer also shows
them in WYSIWYG (> Glossary, p. mode above the translation grid.

Translation grid can contain one or more target languages; language visibility is toggled
from View menu. One language at time can be edited; this active language can be set
either from toolbar’s language drop-down list, or from View—>Edit language... menu.

Translation work-place is introduced in detail in the chapter ‘[Translation work-place|’ p.

Info page

Info page shows log information of processing the Multilizer project.

Multilizer Localization Guide 24

[E Pt ibrer .00 - Unkitied =101 %]

G [t e Project Coben Bow [ook el
LY L LI N =l »

i = | ——— T
=) D e ot egead
- (283 Acceleaton 4 ri * ok |
. wrnl

B MAMALCT

B | iPIRACT > Cancel |
= =4 Dialogs

BEn

=z

=114

B wesavEDnia
4 I3 lcons

R

Oz Contax Maiive | Engaah

; 3] Tl Goto-ine

e 1 Texl 0K

= 2. Texl

L=

Cance

&
=
L=

Bw —

] e

RETCE

Elapead wrer 371 mr
Silep: 10

i e e Eﬁu-ui:ll

TE] [Mot ready | 4

Figure 13: Info Page.
There are three tabs on the Info page:

* Log shows progress of Scan, Make, and Build processes.

e Validate shows the results of validation process when run by the user.
e Statistics shows statistics of the project upon the user’s request.
Visibility of info page can be toggled from View menu.

Log

Log displays information of scan, make, and build processes. It may display warnings or
errors, if there were any issues in any of aforementioned processes.

G =
Cogde: 3 2 N00L 10 3238 :I
5 carring e 'E \D e nolepadfen: KO TEPSD EXE”
icon K =l
[y Log [BY Vaksie] . Statieca]

T | | [Mot rRady | I

Figure 14: Log view shows information of scan, make, and build processes.
Validation Log
Besides showing the QA issues, navigating in the validation log automatically navigates

in the translation grid and focuses the control in the wysiwyg view. This both shows the
context better, and simplifies correction of the issue. (- Malidation Wizard] p. [p4])

Statistics

Multilizer Localization Guide 25

Statistics panel displays short information of translation status of native language and
currently selected (active) target language.

M ative Lmman Otheiz Lukclzd row

Fiows cooart- 3 Trandaled w1 ‘Do not barcisls’ rows: 1 [P PT Shrg

Shang oot 3 | nhumrerbatesd e 2 s oz d P stwm gt :

Wiord count A | T | Uremed spesy 1] T ranelaion lsngth:]
LUbyasd repeve 1]

[Loo] G vebdse ¥ sraisees |

Figure 15: Statistics panel with quick info of translations.

Re-scan project
The idea of re-scanning the project is to check if anything has changed in the localization

source (native software or content). Any changes are automatically synchronized with the
project contents.

Categories

Synchronization changes row statuses, if any changes are found when re-scanning; the
following rules are applied:

e Strings that are not found in the localization source become ‘unused strings.’
« New strings get ‘new string’ flag, and the string is shown in native column.

« If the string of localization source has changed, the old string in the project is marked
as ‘unused’ and the new string is added as ‘new string’ in the project.

In order to review strings of any of the abovementioned category, the corresponding filter

must be applied. (> p. B6)

Pre-translate project

Multilizer is able to use existing terminology to translate the project. There are two ways
of doing this.

1. Translate using Multilizer Translation Memory.
2. Import translations from the file.
Translate using Translation Memory
There are two ways of translating project using Translation Memory:

* Project->Translate->Using Translation Memory... will translate all languages of
the project.

* Right-clicking language column header and choosing Translate->Using Translation
Memory... translates to current target language.

In both cases Multilizer will look up for translations in default Translation Memory;
Multilizer finds matches for Multilizer project’s native string, and populates Multilizer
project with corresponding translations. In case of several translations user can decide
which one to use.

Multilizer Localization Guide 26

MORE INFD

MORE INFD

MORE INFD

Installation and maintenance of Translation Memory is discussed in the chapter
Translation Memory, p. b6}

Import translations from files and databases

Import Wizard can be used for directly importing translations from files and databases
supported by Multilizer.

This way of importing translations bypasses Multilizer Translation Memory, and fuzzy
matches are not supported. In order to support fuzzy-matching of translations, the files
should be imported in Multilizer Translation Memory, and the project should be translated
using Translation Memory.

To read more about importing files, databases, and importing translations from other

vendors' products (TRADOS, Déja Vu, SDLX, etc.), c.f., |

[mport Wizard] p. B7].
Prepare project for translation

Before strings and accompanying information can be sent off to the translator (=
franslation work] p.), it is useful to prepare the project for translation.

Filtering

Filtering enables user to show localizable data meeting a specified criteria (translation
status, row status, data type). Choose View->Filter... to specify the rows to be shown.

For more info on filtering options, c.f., p. B6]
Pseudo languages -2 QA

Software/content can be localized before translation by using pseudo languages; this
enables testing of the software/content localization before any translation work is done.

(> Pseudo Languages] p.

Lock Visual Editors

Sometimes translators shouldn’t have the possibility to edit size and location of visual
elements. To prevent this from happening, you can make dialogs read-only. Choose from
the dialog editor’s context menu ‘options,” and check ‘Read only.’

Marking dialogs read-only allows for translation, but no modifications on dialog size and
location can be done.

Translation control
In order to control translations, strings (rows) can be removed manually from the project.

Strings can also be hidden by applying the filter. Filtering shows strings depending on
their status.

In order to show strings to the translator but not allowing for translation, strings can be
locked.

In addition to the aforementioned features that prevent translation, there is the possibility
to limit translation length. Length can be limited to a certain character count or to a certain
pixel count.

Multilizer Localization Guide 27

NOTE!

Share translation work

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

User’s role in process: Localization engineer, Localization project
coordinator

Wizards: Exchange Wizard
Export Wizard
Import Wizard

Introduction

Multilizer includes built-in support for teamwork. It allows any Multilizer project to be split
and shared between team members. This is useful when sharing translation work. There
are three powerful Wizards that help in this:

e Exchange Wizard

e Export Wizard

e Import Wizard

In order to streamline the workflow and avoid conversion errors, translations and project
information should always be sent in Multilizer format. This is done by using Exchange

Wizard for sending off strings for translation, and importing translated strings with Import
Wizard.

Default workflow

In default workflow, translation work is shared between software developers/localization
engineers and translators. The workflow below shows the tasks in the context of the
Multilizer localization process.

Multilizer Localization Guide 28

Development | Software Software | —»

Multilizer

Figure 16: Default work-flow with Multilizer.

® Developer/localization engineer starts a software localization project by scanning the
software and content with Multilizer, and creating a Multilizer project file. @ He uses
Exchange Wizard (= p. to create a Localization Kit that includes the translation tool
and the texts to be translated. The Kit is sent to the translator.

® The translator opens the Localization Kit. It automatically installs Multilizer Translator
Edition and the sub-project with texts to be translated on the translator's computer. @ The
translator uses Multilizer to translate the sub-project. ® When finished, the sub-project is
sent back.

® Developer/localization engineer uses Import Wizard (2 p. to integrate the
translations in the project file.

Using Multilizer throughout has preserved the technical context of the translations, so it's
very simple to create localized versions of the software.

Exchange Wizard

Exchange Wizard enables sharing of translation work in an efficient and safe way.
Because all linguistic data is sent in the same MPR-format (Unicode®), there is no risk for
data loss inherent to format conversions or character set incompatibilities.

Exchange Wizard is used to create a Localization Kit that is sent to the translator. Import
Wizard (2 p. B7} is used to import translations back.

Creating Localization Kit
Exchange Wizard creates a Localization Kit that includes the following items:
e Sub-project (always)

e Multilizer Translator Edition (optional)
« User-specified files (optional)

Exchange Wizard assists in creating a sub-project that contains a sub-set of project
languages and targets. In addition, filtering can be applied to further control which strings
are added in a sub-project.

Multilizer Localization Guide 29

TIfl

NOTE!

Multilizer Translator Edition can be added on user-request in the Localization Kit.
Multilizer Translator Edition is a freely distributable version of Multilizer, aimed for project
translation.

Exchange Wizard lets users also add any additional files in the Localization Kit.

Multilizer compiles the Localization Kit either to a self-installing setup (if Multilizer
Translator Edition is included), or a compressed Multilizer package file (MLP). Opening
the MLP-file in Multilizer will extract the sub-project and user-specified files in the same
directory as the MLP.

In order to ensure the best possible compatibility, ensure that the translator has the same
Multilizer build-number as the Multilizer copy used to create the Localization Kit. If build-
numbers differ, include Multilizer Translator Edition in the Localization Kit.

Unlike other localization products, users of Multilizer Translator Edition don’t need any
additional SDK's or libraries (such as, .NET run-time or Symbian SDK, for example) to
translate the project. So in order to share the translation work, no other files besides the
Localization Kit need to be sent. This minimizes project coordination overhead.

Exchange Wizard steps

Exchange Wizard simplifies sharing of translation work; it creates an Exchange Package
(Localization Kit) that can be sent off for translation. Wizard is started by choosing
File>Exchange....

Echaege Wixard - Delvery Mithiod |

Tru vz Wi i i o ferd P propect i v Damsdsio o be ianslaled by cieslreg o exchange pachage
Prace fhe appropdsls button to elect the package delreery melfod

H Creuste a peschkagm s, You can pend the package B o e karalshor ko e herlsbad

_ b | _ Cuca |

Figure 17: Running Exchange Wizard.

Pressing Create a File button take the user to next page.
Languages Sheet

On this page user defines the languages and Items (Project tree nodes) to be included in
the package. By default all languages and all items selected.

Multilizer Localization Guide 30

[t tarrge Wizard Lampuagesibest |
Cdar] Hhes Ladeguisgis el v pidiend b chacks 10 Bl acocFaars (s e v S Ewdhichls didis [hoin tres b e
[ty ol clickorg tham
Largapes Joetn:
|Eiﬂ‘l = Isgacuy @
vanlomsdealsdeale bdspin
= i deaic. vipio
=1 =] Foir
= B deale rankim
IH-'IHrnu
= & Faamil
IH-'IHrnu
=t] Sterge
i el Remscn
it Feazrarcs
_ e | Bk [tew | =

Figure 18: Specifying the targets and resources to be exchanged.

Splitting the project by items makes it possible that multiple translators work on the same
language.

Options
On Options page user specifies, which strings are exported.

Echare Wisard Lavpamees x|

Tophec] Hhe tiydh Drat o e b arachuade b Dhed s bl Pateil 0
Tiamilston stehs

F Hexpsmgs

= ﬂ.ﬁwm

= Trandsied shirge

B fada handsled siings

F Emst gosss shengs

R Mok sasdy snd unirsndsled shingy

Fiowd sisbn

B Shwgs nogss

F Mg stings

™ Liead siarge

™ [in not hamlss shergr

[ngbcats siings

Err =]

g | gk [e] cres |

Figure 19: Filtering rows that are exchanged.

Translation status, Row status, and Dicate strings filter strings in the same way as the

filter in string grid (2> p. 26).
Information

Information page lets user specify basic information of the package. In addition package
can be password-protected in order to secure its contents.

Multilizer Localization Guide 31

[Echiange Wizard Infoemation x|
Specily e packoge name and B pachas rlomnain
[Pk ppes
|5 _EMPI
[Dascapbon
[5-mote Locakizsbion Kit with Engish snd Fineish karislations
dthar:

[r-ﬂ re

“iou) can protect He pack sge by gherg & pesevond
P ewanrd Fletyps passwed

Figure 20: Specifying project info, password protection.
Application

Application page is lets user decide whether to send Multilizer Translator Edition in the
package or not. Translator Edition is free, and if translator doesn't have Multilizer, the
package should be sent along with it.

Including Multilizer application in package with increase its size with ~3 MB.

Ehange Wizard Appbcation x|
Tha paickage can el De a coipessssid e Bt cordains B prosect e of & 52 sdrscing E<E e thal ratsl
Mudikrer Tiarrrlaton Ediion and open the project s

Thet pchi e Cordsar:
& The popec e
7 The peopact ke snd plices Trarsbstor Edition wshup

Siher] el ek i Al e Bikded 10 i pachage
™ Apobcation flss

Figure 21: Adding targets in exchange package.
Check ‘Application files’ to include localization targets in package.
Include Files

This page allows user to include any number of additional files in package. For example,
documentation can be included here.

Multilizer Localization Guide 32

Exchaege Wiksrd - Include Files El

That emzid wall ok e Toloesrg Diien b ol pieChoage. “Viou o8N & pOur Do Crbbonn Bbed G Hhes peiech e b4 Diesiang
than fuckd braiton

& argde_EWFI ings |Ti

Hﬂhl Eack Hesd L'&Hl

Figure 22: Specifying additional files to be included in exchange package.
File
On this page the filename of package is defined.

Esachasge Wizsrd - Fle El

Pk e le:
Ig }5 ampde_ENF) rrip J

g | ok |[hew | Corcel |

Figure 23: Specifying the name for exchange package.

File-extension is MLP (Multilizer package), if package doesn’t contain Multilizer Translator
Edition.

If Multilizer Translator Edition is included, then package will be a Windows executable.
Running the executable will install Multilizer Translator Edition, and open the Multilizer
sub-project contained in the package.

Pressing Next button will take user to the next page, and create the package.

Package File

This page shows the process of creating the package. If no issues are encountered then
the Wizard will instruct user to send the package to the translator.

Multilizer Localization Guide 33

NOTE!

Eschege Wixard - Packegs File |

Pk e e Cigabed
AEEERENNEEENE NN ENENEEENENENNEEEENNENEENENNENERNEEENEENN

Siend a5 ample_ENFL mip” In the karalator

_ b | |[_eeen] _Coee |

Figure 24: Building the exchange package.

Export Wizard

Export Wizard exports project strings either into TMX or text file. The main idea of using
Export Wizard is to exchange translations and terminology — and not localization
information — with other products.

Export Wizard enables sharing of translations with other products, such as TRADOS for
example.

Although Export Wizard can be used for sharing translation work, it should not be used

for that purpose. Export always requires format conversions, which may cause loss of
data. Exchange Wizard should be used instead.

Export Wizard steps

Export Wizard simplifies exporting of Multilizer Project (MPR) information to other file
formats. The Wizard is started by choosing File>Export....

Multilizer Localization Guide

34

X

Thatt o] ek i ey 0 epod] didi b ol propscl. Precis e Spoiopriats Dulion 0 sskc! D apoi Langel

ﬂ Crigbs 5 gsqodt He
Crenle m Fi=

HHJ-I

Figure 25: Running Export Wizard.
Pressing Create a File button takes to next page in Wizard.

File

File-page is the part of Wizard, where the output format is specified. Export Wizard
supports TMX (Continue here > , and TXT (Continue here > files.

Translation Memory Exchange file (TMX)

TMX-file export makes it possible to export Multilizer project translations to a format that

is supported by a wide range of Translation Memory products.

‘Eepbec] U e il i veant b0 depaol.

x|

[l it
|I'."-P'|-J-;|Ial'| Files Mt B ybaitlcasic'yvis D ol by J
| THE Tead

Fpiwesi =]

|LI'F-'B j “lrml waraion="1.0% sncodinge UTF=-071F

=) &=
i o e
[1s G N
LG
Ercimn lnguage norarThit A€ & OoabeEs 4 Race >
|E|q,'p|| j SRCoE EYFP exe” cLaksll, Capt iom fpeaps
sy el lang="En"=

mhw sregringlish trenrlecions fmagr

[t = < e

Largratite oty aml langs*an®r

|D'|_‘ ais ﬂ itl-m-u:lln.-u'].:l.:m TN AL T

[wiiie giphy Darolato = iea

& oy

[+ Wik coppinen . N

[+ ‘wiiks gordast

["winike stabus

| o |]

Figure 26: Specifying export file and TMX file format.

Multilizer Localization Guide 35

NOTE!

There are many variations — and vendor-specific implementations — of TMX. In order to
support the original idea of exchanging translations, Multilizer allows users to specify the
most important TMX-file format parameters. These are explained in Multilizer help file.

TRADOS. Following screenshot shows the configuration that create a TMX-file that is
compatible with TRADOS® Translator's Workbench™: 2.3, 3.0, 5.0.1 (Build 217 or
newer), and 5.5 (build 247 or newer)

Export wizard-Fle x|
Sibar] U i il 0l vl B0 il
Eles reives
|I'_"'.I"|-:-;r.5r. Fibes itk M0 cmic oot sl tneg J
| TH= Taad
Frimsi Sample
|L|'F-'E T ﬂ lxml warsion="1.0" snoodinge"UTF=-1lE~1Fk
<|DOCTYFE Epx EYETEN “"heep: i fvww. liys. ccpiess
Warson QT “Emr wacaionE®l.1=r
[11 =] [ur =] nesserssihasdees
=
Eacrn a0 i
||:'|!.-:'| ﬂ axgr Iml: lang="EH" =
apagringlich treneleacicns fmagh
Znurrs languuge .
[”‘E"H‘ ﬂ “turr rml: lmng=~EN"F
L et “gpgringliih transleticn/dagr
<
|L|p-|.|lr|.'l:l ﬂ .
7wk gl Lisacibateon = pdys
™ wi i % STEmEs
[ik gorsbast
r 1

Hee | gack || bew | Corced |

Figure 27: Export settings for TRADOS-compatible TMX.

In TRADOS 5.0 and 5.5 ‘Source language’ must match with the ‘Native’ language in
Multilizer, otherwise TRADOS will not be able to import the resulting file. TRADOS 2.3
and 3.0 require ‘Neutral’ as Source language.

Text file (TXT)
Exporting to text-file is the most generic way of exchanging translation data. Text-file

export creates plain text files, where each string with corresponding translations are
written to one line.

Multilizer Localization Guide

36

Eport woard e
Sekeci e Mk Hhal 00 v bo ot
il s
|CProgeam Fles'Muliizer EvbietD calchwbhDcak et
T || Test
Chaiachs sel Coriesd cokimn
i~ A = Ho
i OTFg r [
i~ UTF-1E. Mde erchan I giiter e
i~ UTF-1E. big srakan i~ Lot
™ Comrerd cobern

[+ Lk UTE B sgrsiue |cEFy <BE» 0BF1]

Fiust Lire: 5 prmpbs
Hative Tranzleticnm 1

I:IHJ-I

Translaticn I

oo []

L'.!l'I:‘Hl

Figure 28: Specifying export file and text file format.

Export to text-file is very suitable for exchanging translations, because most products

support importing of it. Highest compatibility is achieved by choosing settings as shown in

picture above, and by exporting translations to one language only.

SDLX. The settings above create a text-file that can be imported in SDLX (version 4.0) as

such. User needs to import in SDLX ‘delimited files’ and specify source and target

language correctly.

Options

After specifying the file format, Next button takes user to the Options page. On this page

user specifies, which strings are exported.

Multilizer Localization Guide 37

Expurt Witard - Optiss |
Sekc] i aplions
Empuinl g Larguags
o e ¢ Cunend Fegpt, |

Tbivbann siehas

F Feade sings

F @ complsted sings

F Trandsied shargy

B o hensdalsd sing:

F Bast gusss shergs

B Mok resdy and unirandsled shargr

oo isbci

F Shwgs inisss

B Mg stongs

R Lsed shinge

[Do reod hsrlste shangs

[hgbcats siings
|Expeoit ol shiwage =]

Hee | gack || Bean | Corced |

Figure 29: Filtering of rows that are exported.

Export Range can be either the entire project or the current node. Current node
corresponds to the strings shown in the translation grid when Export Wizard was started.

Translation status, Row status, and Dicate strings filter strings in the same way as the

filter in string grid (= p. B6).

Exporting of TXT-files and TMX-files allows users to choose any combination of
languages to be written in the file.

Import Wizard

Import Wizard is used to import translations from Multilizer project (MPR) files, and from
other formats.

Import Multilizer Project (MPR)
There are two reasons for importing Multilizer Projects.

1. It provides the means for leveraging translations from other Multilizer projects.
This is useful when creating a new Multilizer project and translations should be
the same as in existing projects. In order to ensure consistent terminology,
Translation Memory should be used.

2. When sharing a project with Exchange Wizard (= Exchange Wizard| p. ,
translations of sub-project(s) are imported back with Import Wizard.

Because the Multilizer project (MPR) is Multilizer propriety format, it is the safest way of
exchanging translation data.

When using Exchange Wizard and Import Wizard together, correct import options play a
big role in the localization process. Typical import options for a Multilizer project are

discussed later in this chapter (> p. B9).

Multilizer Localization Guide 38

)

NOTE!

Import from other formats

Multilizer also supports 3rd-party formats for importing translations. This enables
translations of other systems (e.g., TRADOS, SDLX, Déja Vu, etc.) to be imported and
used in Multilizer.

If importing of translation data fails, check out the documentation of the product that
created the file. Also try out importing with a different set of import options. Because
Import Wizard relies on formats (and not on 3rd-party products), Multilizer can't guarantee
compatibility with any particular product.

Import Wizard steps

Multilizer imports both files and database content. When starting Import Wizard, the user
has to choose the translation source.

lmport Wizard - Source x|

V0w e g Danssbon: bown o e o bom & detsberns Fiess e sppogiate b,

| il vl siecree b & He Tha Dl oo eithed b an Spphoation fle, 5 Scloray e, 4
ghray e, or & baralstion rerony B

| ot hanssons bom 5 detshass dictiorary, o ko & dstsboss heid

I:IHJI | E-!H!‘ﬂll

Figure 30: Running Import Wizard.

File import

File import requires that the user specifies the location of the file that is supported by
Multilizer.

Multilizer Localization Guide 39

T x|

‘Spec] U e il 0o veant B0 @il

| e - | Sira | Topa | Hhfad |
Bfteat vbp 1ED ‘hisusl Dasi Frojsc 20,5202 1M

Soedec] types of Dk OF pee & vkl Cid llled
|H supporhed fles .ﬂ

Hee | g [me | Corced |

Figure 31: Specifying the file to be imported.

The user can filter the files shown in the file list by choosing the appropriate file format
from the drop-down list.

If the user chooses ‘select file types...” Multilizer opens the Select File Type assistant that
allows the user to specify platform and file type. Upon closing this dialog, Multilizer will
choose the correct filter.

=
b Mt e []
T HET I~ Tad i Cancel |
1 \hrdossy ™ Traralstion Memoty Exchange b Help |
T eirelos: CE [Do 5 opaalad Vs s
T . ™ itk dhobonassy il
r
T Jlava
T paa

Figure 32: Selecting file type for the file to be imported.
Import Options

Import Options is the most important part of the Import Wizard. The options specified here
affect the way that translations are imported.

For importing a Multilizer Project file, the options are as shown in the picture below.

Multilizer Localization Guide 40

NOTE!

x

s e T e
bt el

|El.l|-:-'lnd|l:'l'ir b i ﬂ
ke Coniesd grad nsies ambes il mabcky

Drewrraits I orend wshss

{11 the inpioet statuss is ol oo gester than the cupsrt shans =
B Irapont ook il Hee ouhm i nok sy

FF Irsct onby Hye wakee doms not goual i the natrvs valus

It baraldion dafus

Cle Ce W Seeen [-

[Impoad the Do Kol Trandsle s
[T Irpo! mrawarsurs ksragth b

Cioinireised §

Do el g

& I i P el viskes i ety
Fﬂmlhculﬂm

Help | Ba [ek Cancel |

Figure 33: Specifying Import options.

Import method tells how Multilizer performs the look-up of the native string. The user can
specify to match the Native column string only, or the user can force Multilizer to do
context-specific matching. This means that translations are imported in correct context.
This is the recommended way of importing Multilizer projects that were sent off with
Exchange Wizard.

Overwrite options specify the rules for importing a translation if Native look-up is
successful. In order to ensure the quality, the user should never allow Import Wizard to
import translations with lower (quality) status than those already in the project.

Translation status should be imported as such from (Setting: Yes) the project.

Import options are highly dependent on the file format of an imported file. Import options
for typical import file formats are discussed in the next chapter.

Options for typical file imports
Typically, the following file formats are imported with Import Wizard:

e Multilizer Project (MPR)

e Textfile (TXT)

e Translation Memory Exchange file (TMX)

e« Comma Separated Values file (CSV)

e Multilizer dictionary file

All of the abovementioned formats serve a specific purpose, and therefore special
attention should be paid on the import options.

Multilizer Project (MPR)

Import settings for MPR are discussed in |mport Wizard steps| p.

Translation Memory Exchange file (TMX)

Translation Memory Exchange File format is used for exchanging data between
Translation Memory products.

Multilizer Localization Guide 41

NOTE!

When opening a TMX file for import, Multilizer first detects the languages included in the
file.

mllhhwummmhﬁm

Figure 34: Specifying languages to be imported from TMX file.

After specifying languages, the user can decide the options for importing translation data.

Enpurt Wizard Optons |
s e T e
bt el

|El.lv|u| ﬂ
[Coriesi g

Dremararits e oy arend wnhs

|t i
R Import gnks i Hee wshes & not amply

R It candiy il Hee b hoas pod 2vped ko e ntiee: vsis

Help | Ba [ek Cancel |

Figure 35: Import options for TMX.

Import method specifies the look-up method for matching Multilizer project’s Native
column with source language in the TMX.

For example, ‘By value’ means that the string found in Multilizer project's Native column is
matched with the source language segment contents of the TMX file.

Overwrite settings specify when a translation should be imported.

TMX format is based on XML, thus implying many vendor-specific variations. In addition,
there are many versions of this format. Therefore, finding of correct import/export settings
for this format can be time-consuming. If you use this format a lot, we recommend
subscribing to Multilizer SUMA (= Multilizer Support and Maintenance} p. @ which
includes certain amount of free consulting. Multilizer consults have years of experience
on working with localization and human languages-specific file formats.

Multilizer Localization Guide 42

Text file (TXT)

Text file import work with files where each translation record is on one line in the text file.
Each line should contain at least a source term and target term separated by a delimiter
specified by the user. This filter imports CSV-files as well.

i
Sl Hhoe bl B bodivadt sichs B Cobianih . Chalrestesl ard B Ioivst
Firil e
[L] Frojack
Loksne Ciphone
Mgt Chewache got-
. = 3
&_ Erideg
ﬂ |'-A"n:m: ﬂ
o || b
[T Bl
|| ause
|h-:-'n ﬂ
Add largege.. e pthvet ook | lorare bree: [T

Snmpla

Hacive Fivesth-sering Ignors Thic ic & commses, Ignors thic Juics

Hee | g [me | Corced |

Figure 36: Specifying file format for importing text file.

For example, in the picture above, import filter is configured to import translations from a
text-file where each line contains four columns. Columns are separated with TAB
character. The Native column corresponds to native column in the open Multilizer project.
The Finnish column should include Finnish translations in the imported text file. The 3"
column is ignored, and the 4" column includes a comment.

Upon completing the Wizard, Multilizer will match Native columns of the file and open the
Multilizer project. If there are matches, Finnish translations will be imported from the text
file. If there's a comment in the text file, it will be imported as well.

Comma Separated Values file (CSV)

Multilizer CSV support is intended for importing Microsoft glossaries, either as
translations to current project or to Multilizer Translation Memory.

In order to import other CSV files, use TXT-import instead; it includes all configurability

required to CSV-import. (2 [extfile (TXT)] p. #2)

When using CSV-import to import Microsoft glossaries, Multilizer attempts to detect the
language of the selected glossary.

Multilizer Localization Guide 43

Binporl Wiksrd - PMicrosel Glessary !I

Cdec thes lareduisge of i phosnasy ared sel e bEparton i il
Larguage
Aizen_ ool =]
Ao, Lsém
ST T
Dalgnisian
Dy susn
Cnlalse
w [Dranase, Sanphied
- ([rinege, Tracionsl
Czach
Dlarish
(reshi
- ([l
+ Erghd
£ vhoran
e]
Farii
Fawish
+ Fyench :J

Sapastor | Sy =

Figure 37: Selecting language for importing Microsoft glossary.

If language detection fails, the user can change it manually.

Multilizer Dictionary File

Multilizer Dictionary Files (MLD) were widely in use in previous Multilizer versions. They

were used both as glossaries as well as a resource in multilingual Delphi, C++Builder,
and Visual Basic applications.

Multilizer Localization Guide 44

Translate

Required product(s): Multilizer Enterprise

Multilizer for Windows
Multilizer for .NET

Multilizer for Visual C++
Multilizer for VCL

Multilizer for Java

Multilizer Translator Edition Pro
Multilizer Translator Edition

User’s role in process: Translator

Wizards: None

The Multilizer project can be translated with any Multilizer edition.

Restrictions

The items that the translator can access depend on how the project was prepared for
translation (= [Prepare project for translation| p. @

Possible restrictions are:

e Translation length is limited to a certain pixel or character amount. If translation
doesn't fit, it should be reported in the comment.

e String is locked; translation can't be added.

« Woysiwyg editor is read-only; translations can be edited, but forms position and size
can't be edited.

The translator should always check the availability of possible comments; there may be
translation-specific information.

Restrictions can't be disabled in sub-projects. If translation is done directly on a main
project (i.e., Exchange Wizard has not been used), then restrictions can be disabled as
NITEI described in the chapter {Prepare project for translation|, p. @]

Translation work-place

Translation work-place is the part of Multilizer user interface where translations are done.

Project Tree enables easy navigation between project parts, and corresponding strings
(and other localizable data) is shown in translation grid. Multilizer Translation Grid always
shows Native language and target language.

Multilizer Localization Guide 45

New (native) strings are marked with a yellow dot in the grid margin.

[E rultirer .00 - Uinkithed =101 %]

Pl [de fmws frome: Gouen Bow ook e
DFE A& e AmFHEFE| = »

B =
=) D e ot egead
= 13 Acceleasion

B MANMACT

B LLIPIPADT
H i Dialoga

Bun

[Englsh I

Elapead wrer 371 mr

Figure 38: Translation view in Multilizer.

If selected node is a dialog or menu, Multilizer displays it as Wysiwyg, as in image above.
Untranslated strings are shown in red.

Selecting visible columns

Choosing Columns... from the Translation Grid’s context menu (or selecting
View->Columns... from main menu) brings the following dialog that lets the user specify
the visible columns:

e A
Frad
Coanporesnt
Prigganiy

= Cipried

=

o S
Cormant
Shatiy
Mae characieis

R Cinidinsnl
o datur

Figure 39: Choosing visible columns in translation grid.

Multilizer Localization Guide 46

)

NOTE!

In order to view more than one language, select any of the languages listed in View
menu.

Row filtering

Filtering is used to view only a part of the localizable data in translation grid. Users can
specify how to filter rows by translations status, row status, and data type. Choosing
View->Filter... shows the Grid Filter dialog.

Data type filter

Translating strings is one part of localization. In addition to these, there are other kinds of
data that need to be changed in the localized software. Multilizer can show in the
translation grid various data types.

On Data Types tab user can define what data types are shown in the translation grid.

Gridfiter x|

| Translation Statuzes I Row Statuszes I Otkers I

Binary values
[Boolean values
Calars
[] Floating paint numbers
Forts
[] IME maodes
[Integer nurnbers
Images
[] Reading arders
Shart cuts
Shings

k. Cancel Drefault Help

Figure 40: Options for filtering by data type.

Generally, the translator should not translate non-textual data, except if asked separately.
Translating non-textual data can damage the localized software, preventing it from
working correctly.

Translation status filter

On Translation Statuses tab user can specify, how to filter rows by the target language’s
status. If all statuses are checked, rows are shown regardless translation’s status.

Multilizer Localization Guide

Gridriter x|

Data Types i [ranslation Statuses I R Statuses I Others I

Mat ready
Best quess
Auta translated
Tranzlated
[lAed

Ready

k. Cancel Drefault Help

Figure 41: Options for filtering by translation status.

Row status filter

On Row Statuses tab user can define, how to filter by row status.

New rows contain localizable data that was not present in last re-scan (=

of targets. Unused rows are those that are not found in the targets. In use
strings are those that are found

Gridriter x|
| Otkers I
M
Unuszed
I uze
k. Cancel Drefault Help

Figure 42: Options for filtering by row status.

Multilizer Localization Guide 48

Other filters
Others tab contains other attributes that can be used for filtering.

Strings can be filtered by Do not translate -status as shown in figure below.

oridriter x|
Data Types I Translation Statuzes I Row Statuszes DtthSl
Enabled
* Both
= True
" Falze
k. Cancel Drefault Help

Figure 43: Options for filtering strings by Do not translate -status.
Translation grid options

Right-clicking the translation grid area and selecting Options... from the context menu
(Main menu: Tools>Options->Grid...) shows the grid options dialog. Grid options affect
how translations are shown in the grid, and what additional information is shown.

Cridopeieas x|
Farid Dot

IS - | | | T Aok
e =l
10 = F duso [ME

Aabbvyiz

Figure 44: Translation grid options.

Multilizer Localization Guide

49

Visual Editors, Wysiwyg

Visual Editors enable editing of both non-textual data as well as translation.

Translations of dialogs and menu-items can be edited so that results of localization are
shown visually during translation. This feature -- also known as Wysiwyg (What you see
is what you get) -- reduces the time spent on localization QA.

Multilizer visual editors allow two-way navigation. When user navigates in translation grid
corresponding control in wysiwyg gets focused. When user works in wysiwyg,

corresponding cell in translation grid gets focus.

[st zear 6.0 - Unbikled .ﬂg
El: Eot Yew Projsc Qoluen Bow Do Hep
DEE R &Rl BE &8 G =1 »
e 4| ——— T
=1 @ F - \Democinobepad M=
= A Acceiniators ¥ |‘ 2 Ja
S MAINALCT :_—-
B SLIPUPACL 5 Mebrechen B
=1 Dviarboagh
Bn
=z
=14
= HPSAYFDIA
- 'j_l.rnru.
M
Bz Haiive | Greman |
Qs Cancel Abibirachan 4
ﬂ 4 a| Zobo bne
5
= al O A
i B =
Or
Oa B
CIg g r T
=) 0 Suijnas st
a| | ¥
Hatve Gmrman Mhmz SGnbacted inm
Arwoort: 3 Tsnclstad w2 “Dis okt mrwslte™ oess 00 Ll s Shrg
Shire] coird 2 [| M s i 3 sl bergdth E
Wetoad coant- Il Llrnezsd ioaar [} Tiandséon krgth 3
Ll pesd s 0]
i Wilicaln 77 hiﬂm:l
T | | | ko branadabed | i

Figure 45: Visual editor for forms and dialogs.

Multilizer Localization Guide 50

[st zear 6.0 - Unbikled ‘ug
Fle Edt YWew Project Colen RBow Dok Hep
DEE R &Rl BE &8 G =1 »
B A s Foww e
=1 @ F - \Democinobepad P wmy Chiskl
= A Acceiniators ¥ sy [mi in)
B WAIMALL Tawn Ciid
B SLIPUPALL Speatuan urded
=1 Dviarboagh -
Bn Cade wrwictden
=R E] 510 ChisF
=4
B HPSAVEDIA Beerrien
= ‘A lgons
M1
i [M alres - | German =
R [b] 2About Notepa
L4 | &Capy -+ Ciri+
Bs B
M & | #| &Edn
0 7 | 7| &Fila Llatai
j i =l &Find b Cirl+F
‘H W || AFent
‘P =] | ¢ &G0 To... +Col+G
1] 2 =l &Haln LHitw =l
Hatve Gmrman Mhmz SGnbacted inm
Avwoomt 26 Twsnclstad oms: 7 “Dis okt mrwslate™ e Ll s Shrg
Sl ool 76 ek o 19 M i e 5 M bergih i
Wtoad coand- 49 T, Llrnezsd ioaar [
Ll pesd s 0
B Lop] G veides 3 St |
T [| ot rmady [I

Figure 46: Visual editor for menus.

Visual Editor (Wysiwyqg) settings

Right-clicking the wysiwyg area and selecting Options... from the context menu (Main

menu: Tools>Options->Graph...) shows the wysiwyg options dialog.

et options x|
| Grid | Dt
™ Lisplay gnd b Buto Bounds
F Gnep o ' Canfeduce
wss [| | Besdlng
Thee [|| ¥ ShesBound
[T Ghoss Comporesrds
¥ Shes Glaut
[]| Coxd | Dowa tinks

Figure 47: Options for visual dialog editors.

Options

« Auto bounds makes placeholder resize to the same size as translated string.
e Can reduce allows manually decreasing the size of placeholder.
* Read only locks the editor in the way that only translation is allowed; any

modifications on

layout are disabled.

« Show bounds enables color coding control boundaries according to changes in size
and position of localized placeholder's (= Control boundary colors} p. @b

Multilizer Localization Guide 51

* Show components will show non-visual components as well. This setting applies to
component-based environments, such as VB, Delphi, C++Builder, and VS.NET.
e Show status will show status of wysiwyg components.

Grid

Grid options allow users define grid size and whether to show it or not.

Localization of strings

Editing translations is easy; translations are simply entered in translation grid, just as in
Excel spreadsheet for example.

You can start editing the contents of a cell by double-clicking the cell with the mouse,
pressing the F2 key, or simply starting to type.

You can stop editing the contents of a cell by clicking outside the cell with the mouse or
by pressing the F2, UP, DOWN, or TAB key. If the native cell contains line feeds, you
have to press the Ctrl+UP, Ctrl+DOWN, or Ctrl+TAB keys.

Pressing ENTER stops editing and moves the cursor to the next cell if the native cell
doesn’t contain line feeds. If it does, then pressing ENTER adds a line-feed to the cell.
Press Ctrl+ENTER to stop editing and moving to the next cell.

During editing, the cell has a light yellow background, and it shows non-visible
characters.

Native English [1
Oracle Forms Opti

untii, Runtime

untii Forms 5 Runtime -Fnrms-&5-|

untii| ...

untii Faorms B Runtime

unti| ...

Figure 48: Translation grid with cells showing non-visible characters.

Localization of accelerators

If selected node is Accelerators, Multilizer displays them in Accelerator table.

Multilizer Localization Guide 52
[st zear 6.0 - Unbikled .ﬂg
El: Eot Yew Projsc Qoluen Bow Do Hep
DEH RS RO AE BR[| =1 »

B a =l | Tope | Matien | Gaman | =
=1 @ F - \Democinobepad 3 AsCll
= A Acceiniators ¥ 1a &1 ni
L m 1 AsCl]
% SLIPUPACE]ﬂ;ﬁ "fF':-'_':JhL ::“I —
¥ + .3
- L'| 't
JEHT 5 VIRTLAL WE_F1
= R F i VIRTLLAL WE_F] | |
=RT 12 VIRTLAL W5
a1 &30 T
. 2 WPSAVEDIA k| WIRTLLAL Cal +WE_F
= 3.5“"‘ a0 WRTUAL Ol +VI_H =l
1
Bz Haiive | Greman |
I
a
As
MAeE
5 I T
Dim
T
& 4
a| | ¥
Hatve Gmrman Mhmz Snlected inm
Aew oot 0 Twnslsead s 1 T oot s laos™ ypass (0
Sl courd 0 e rrdabed o 0 M s i [u]
\eload connd- 10 Llrnezsd ioaar [}
Lisesd rowws i}
A Veldatn T Saintcs |
[mm [| ok raady | I

Figure 49: Accelerators view.

Double-clicking an accelerator enables translation of it.

A Lelelansr Propertics

-]
=
I ghit

Figure 50: Localizing an accelerator.

Localization of images

In addition to text translation, images can be “translated,” which means that images of the
original software can be replaced with new ones in the localized software. Bitmap
resources, cursor resources, and icon resources are images.

In order to see images, ensure that Images is selected in grid options (=

Reference source not found.] p. Error! Bookmark not defined.).

Multilizer Localization Guide 53

=100 =]
Elr Qot Yess Projed Colun Bow Tooks Help
D [B& % e M B 8| k|G = »
&l =0 | Nathe]Gdrrnan j:.'
SR F D emarinotepad =
= A Accelniabgrs ¥ - —ﬂ
B WAIMACT []
B sLIPUPADE)« -
-1 23 Do | | ==
BEn o =]
E 12 | Wt
= R L] B AllFiles J
JIE HPFSAYE DA B ANS|
A | cancel Abibenrhen
2 - Cancel Abteschen
EE | +| Cancel Abtepchen i
Dha Cannol-accass-yourpenbes g
As .| Beesure-that your penbee s connec ead
M & propary-and-usae-Conteok P ansd toewerify
o7 A | | hat-the-prraris- configuesd propary
J fi Cannil carry oul e Wiond ¥Wrap
=y e command because hers = 00 much
;”‘"5 ~ (el i Bhe Bla
] |.I pI Eannnl creabe he %% Hla Y :]
Hatve Gmrman Mhmz SGnbacted inm
Arwoomt: 50 Temnclstad comy: 24 “Dis okt mrwslate™ e Ll s Shrg
Sy courd 30 el e T4 M i e - M bergih 10
Wtoad et A58 [Pk | Urnezed ioaac [
Ll pesd s 0
Log| G Veldatn T Snatstce |
[| ok rmaty i

Figure 51: Localizing images.

Native language image can be copied to target language choosing Edit->Paste
Native.... If image will be the same in Native language as in target languages, it shouldn't
be copied.

In order to localize the image, right-click target language cell and choose Load.... User
will be prompted for the location of localized image.

Localization of AVI and other custom resources

Multilizer localized Windows custom resources. Windows custom resources can contain
any data, such as AVI animations, Wave sound files, etc.

Custom resources are binary data. In order to see custom resources, ensure that Binary
values is selected in grid options (= Error! Reference source not found.| p. Error! |
Bookmark not defined.).

Multilizer shows a place-holder for binary data in translation grid.

In order to localize custom resource, right-click target language cell and choose Load....
User will be prompted for the location of localized custom resource.

Software translation specifics

There are major differences between the translation of words and phrases in software
and conventional translation work. The clearest differences are the following:

Multilizer Localization Guide 54

e There are a lot of one-word translations to do. The strings to be translated are mostly
very short.

« The GUI (Graphical User Interface) elements have standard and mostly explicit
translations.

« Strings may include characters and codes that have a special purpose in the context
of the software functionality.

« The GUI may require a certain maximum length of translations.

In addition, there are many other features that can be derived from those mentioned
above. Multilizer includes many features that help you do the translation work.

Characters with a special purpose

Depending on the programming language and the programming technique that the
developer has used, the strings in the dictionary may include special characters.

Sample string Explanation

Cannot create file %s %s is used to denote a string inside another
string.

E.g., if ‘temp.txt’ is assigned to %s, the software
would show the following: ‘Cannot create file
temp.txt’

So, %s must exist also in the translation.

%s (%s, line %d) This is like the example above. There can be
multiple special characters in one string to be
translated.

If you have to change the order of the special
characters in your translation, inform the
developer of this.

%0:s (%1:s, line %2:d) | If the code is property internationalized, there
should not be a string like in the above row but
like in the left. As you can see, every variable
has been indexed so you can freely change the
order of variables.

&File The & sign is used in menu items and button
captions to show the hotkey, i.e., the character
that is underlined and is used to trigger the
menu.

In the example at the left, the text would be
shown as File in the menu. It's up to you to
decide which hotkey you want to use in the
translation.

CODEBASE_ENUM This kind of dictionary items can normally be left
untranslated. The developer might be using it in
a way related to software functionality.

Normally the developer should mark strings that
need no translations. These strings appear on a
gray background in the dictionary.

Maximum length of translations

One common issue is the length of the strings to be translated. The string layout in the
original software may accept only slight changes in string length. Therefore, the translator
has to pay special attention to this.

Multilizer Localization Guide 55

Multilizer helps in showing possible troublesome translations: it makes the cell
background darker the more the translation’s length exceeds the native string’s length. In
addition, Wysiwyg gives the translator immediate feedback of whether the translation fits
in a dialog or not.

Translation Memory maintenance

Multilizer Translation Memory allows storing of translations made in the project, and
importing translations from glossaries. In order to keep its translations consistent, it needs
to be maintained. (= Translation Memory, p.

Sending back translations

If translations were made on a sub-project (i.e., based on a Localization Kit made with
Exchange Wizard), translations must be sent back to be integrated in the main project.
Choosing File>Exchange... from the main menu will instruct in this.

Multilizer Localization Guide 56

NOTE!

Translation Memory

Required product(s): Any
User’s role in process: Terminologist, QA personnel, Translator.
Wizards: -

Introduction

All Multilizer products include Translation Memory.

The idea of Translation Memory is to store translations for easy re-use. Reuse of
translations saves time, and translations become more accurate as the same translation
is applied in every occurrence of the same native string.

Multilizer Translation Memory stores translations in a database. The database can be
either local database (such as DBISAM) or server database (E.g., SQL Server, Oracle). If
there is no commercial database system installed, Multilizer uses its own database
(DBISAM) for storing translations.

Ensuring the Translation Memory quality

Because Translation Memory automates translation, users should pay extra attention to
the quality of translations that are stored in it. If non-sense data gets stored in it,
automated translations may also return bad results. This would compromise the benefits
of using Translation Memory at all.

Before adding any data in Translation Memory, check out following chapter {Store |

(p. B0). It explains how to ensure that translations of decent quality get
stored in Translation Memory, and how to use block words to improve fuzzy match

performance in both speed and quality.

Using Translation Memory

See [ranslate using Translation Memory| chapter (p. for information on how to
translate open Multilizer project.

Multilizer Translation Memory configurations are found in Tools->Translation
Memories... menu. It will display the Translation Memory configuration dialog.

Multilizer Localization Guide 57

e N —
Erbecided] Genessd | Documenis | Block winds List | Concondance | Mantsnance |

Cument bran bstion mesmony sloimesbion
Visgaor: 4 0004 Tipes DHISAM
Dondabisse: L Prograns Fils i iilioe) B 1M

Lipdoniyc Fuzzy mabcieng

Bvven Branslabons tn e ban lbon memons

& Wy cormavend [Fiks | Save o Trnslsion Hemonn|
" Prompled whes gesing e project

7 iunoenatally rhen i the peoect

omwen thee b i B stasbus by greste of sowsls b [ﬂ
B ¥t ion, coumnd |1 ill

Deviivaiic i] g

¥ blewn

£ 10t phstiny b bes o o o
™ Prorngd befong ovtierie
L1 LT

r

Doconemct | SetscDefmad | gl | |

| DK, I Cancel | [l

Figure 52: Translation Memory administration.

Multilizer allows using of several translation memories. Each configured translation
memory is shown in left-hand side list box. Default translation memory is checked in the
list. Translation Memories that have no active database connection are shown in gray.

In order to be able to configure any of the translation memories, you must be connected
to it. Once connected, there are five tabs:

e General
These settings affect the way that active Translation Memory is used from
Multilizer; it specifies on which condition project translation is stored in Translation
Memory, and on which condition Translation Memory returns translations for
translating project’s native string (= [[ranslate using Translation Memory| p. .

* Documents
All translations stored in Translation Memory are grouped by documents.
Documents can be either Multilizer projects whose translations are saved to

translation memory, or glossaries that have been imported by using Import Wizard.

(= Btore translations] p. 0}

» Block Words List
Block words are used in fuzzy match searches. Besides excluding common words
(and hence preventing unwanted matches) using them improves the performance.

(> Block words] p. p2]

» Concordance
On concordance tab matching method is specified. If configured Translation
Memory supports fuzzy match, user can set threshold for returned translations. (=
Finding Translations| p8]

¢ Maintenance
Maintenance tab contains Translation Memory maintenance specific functions,

such as backup, restore, and clear. (> p.

Multilizer Localization Guide 58

Finding Translations
Multilizer supports three different ways for finding translations for project’s native string.

* Fuzzy matching looks for strings that have something in common with project's native
string. User can specify a threshold percentage, in order to control how similar strings
have to be.

« Minimal difference match looks up for strings that have the same words.
Capitalization, punctuation and special characters are ignored.

« Perfect match looks for strings that are exactly same as the native string.

Close-to matches and perfect matches are bidirectional; if English to German translations
are stored in Translation Memory, Multilizer can find German to English translations too.

[EEEED e | Documerts | Block wionds Lt Concarndance | Marisnarce |

Lessink, 1 ity
[Wi rewrarval chilfn ersca maleh
15 Wt fe el [T 100%

) J

Afemnces] Sadng
Block szt with bacuarey rvsi; |20 :II

| DK, I Carced Dl He=ip

Figure 53: Translation Memory; setting matching options.

Installation of Multilizer Translation Memory

When running Multilizer for the first time it creates a local DBISAM Translation Memory.
Depending on the specific needs, user can afterwards add any number and any type of
Translation Memories.

New Translation Memories can be added either on local database or on database server.
Read chapters ‘Create Local Translation Memory] (p. B9} and ‘{Create Server Translation |
Memory] (p. B9) before adding a Translation Memory.

Click Add... button in Translation Memories dialog to add new Translation Memory.

Multilizer Localization Guide 59

NOTE!

T x|

K

Lrguge
|Eradiih =

Cstoni
r I LUse bz maiching

[TErT E)

[inactmy:

[0] el | peimk | e

Figure 54: Adding properties of a new Multilizer Translation Memory.

Name is a descriptive name for the Translation Memory.
Language is the source language by which the Translation Memory is indexed.

Options allow configuration of basic functionality; multi-user support, and fuzzy-matching.
Multi-user option is available only for database servers.

Selected options affect the format of Multilizer Translation Memory. They can't be
changed after creating it.

Depending on the selected database, connection parameters vary. To get correct
parameters, ask your system administrator. If DBISAM database is used, directory should
point to an empty directory if you want to create a new Translation Memory. If there's an
existing Multilizer 6 Translation Memory in the directory, that will be used.

Create Local Translation Memory

Before creating a new Translation Memory from Multilizer, user has to create an empty
database for it. The only exception is DBISAM, where Multilizer creates the database.

In New Translation Memory dialog (Figure 54: Adding properties of a new Multilizer |
[franslation Memory.|) user then specifies the connection parameters to the empty
database.

Create Server Translation Memoryf]

Multilizer Translation Memory can be installed on Database Servers, such as Oracle,
SQL Server, and Interbase for example. This enables better performance with big amount
of translations.

Furthermore this enables multiple users to use the same Multilizer Translation Memory.

! Feature enabled in Multilizer Enterprise.

Multilizer Localization Guide 60

NOTE!

TIrl

To create Multilizer Translation Memory on database server following steps need to be
done:

1. Create a user on database with sufficient rights to create and drop database.
Create an empty database that will contain the tables required by the Translation
Memory. (This is done with database administration tools).

2. In New Translation Memory dialog (Figure 54: Adding properties of anew |
Multilizer Translation Memory.|) user then specifies the connection parameters to
the empty database. Multilizer will create the tables required by Translation
Memory. In addition Multilizer adds default Translation Memory user with full
Translation Memory administrator rights to it.

3. Add/modify Translation Memory users. This is done with Multilizer Translation
Memory user management (- Next chapter).

Because Multilizer Translation Memory has its own user management, there is no need —
from Multilizer Translation Memory user management point of view — to specify the users
with database administration tools; Multilizer's own user management allows specifying of
appropriate access rights for different users connecting to Multilizer Translation Memory.

In case of assigning users using database administration tools, required database access
rights are discussed on SQL Statement level here: |:|p.

Store translations

Translations are stored to Translation Memory either by saving project translations to it
(File>Save to Translation Memory...) or by importing translations as documents.

Save project translations

When choosing File->Save to Translation Memory... in Multilizer, the translations of
open project will be stored in default Translation Memory. Project translations can be
configured to be saved in Translation Memory automatically.

Regardless the way of storing translations, user can define that only strings with certain
status are stored in translation memory. For example, only QA-ed or Ready strings are
stored. This ensures that only verified strings are stored.

% Feature enabled in Multilizer Enterprise.

Multilizer Localization Guide 61

T rairslation Fenseries

EEECN Gcvcro | Cocurents | Block wimds Lot | Comcondanece | Munenarce |
r Cunent arsbshion mesmaony sioomsion

Wersior: 300004 Tpoe: DBISAM

Crapbisse: C:\Praogran F sy ulilics) B8 TH

Diplion: Fuzy matckang

G Branslahons o e ke bsbon wesmone
% Py command [Fie | Save o Tiandston Hemory|
" Prompled wher pasing the poject
© sunraticaly mhen reng e pogect

Smws thee st F e shabus iy grester o squsls o [Finats =
M [rarslstion cosnt |'I ilj

| Drvtisaile e e dlieg

% M

£ 10t phstiny b bes o o o
™ Prorngd befong ovtierie
Ak

™ Logihe oo vl e
[rmconrect | Ent oz [efe sl I Al I Fiera-ree I

[x| coce | powa

Figure 58: Translation Memory; general settings.

Import documents

Click Add... on documents tab to import translations.

EEEEEEEEEEE ccs| ewgn Docunens | Block wisss Let | Concondance | Martsnance |

o Dhoh ingsl Musize Fropeid

e | Ty | .g.:u.|

[o | coce | powa

Figure 59: Translation Memory; importing of documents.

When importing text, it is passed through Multilizer Translation Memory’s segmentation;
text is being split in shorter strings, which improves fuzzy match search results.

Multilizer Localization Guide

62

Segmentation

The idea of segmentation is to split longer source language texts into segments by using

segmentation rules. As a result one or more source language segments point to
corresponding translation. This helps to easier find existing translations.

A segment is normally equivalent to a sentence. Based on this, pre-defined set of

segmentation rules aim to split text in sentences. E.g., a full stop, exclamation mark,

question mark, or colon indicate the end of a sentence when they are followed by
space.

Block words

a

Segments are stored in a way that each word of it — except a block word — is indexed.
Block words are typically the most common words of a spoken language. Common words

exist in most sentences, hence not differentiating two sentences in any way.

Specifying block words will improve the results of fuzzy-matching and speed up searches.

e —
EEEEEEEEEEE | oo | Do Bhook o Lst | Concordance | Haisinance |

b ==

|Fr|m:'\.

M word

ddd.

| DK, I Cancel

[l

Heip

Figure 60: Translation Memory; specifying block words.

@intenance

Maintenance tab includes tools that affect the entire Translation Memory.

® Feature enabled in Multilizer Enterprise.

Multilizer Localization Guide 63

e
EEEEEEEEEEE | oo | Doouneis | Blookwis L | Concodence Harniznane |

| DK, I Cancel [l

Figure 62: Translation Memory maintenance tab.

e Clear
Clear will erase all translations from Translation Memory; it clears all tables of
Translation Memory database.

e Backup
Backup will export Translation Memory database contents to an XML-file. It makes
perfect copy of table structures and data.

* Restore
This restores the translations from existing backup file. Restore erases existing
translations.

e Repair
Repair checks out for unlinked segments and other garbage data in Translation
Memory, and attempts to make corrections.

Multilizer Localization Guide 64

Quality assurance

Required product(s): Multilizer Enterprise

Multilizer for Windows
Multilizer for .NET

Multilizer for Visual C++
Multilizer for VCL

Multilizer for Java

Multilizer Translator Edition Pro
Multilizer Translator Edition

User’s role in process: QA personnel, Translator

Wizards: Validation Wizard

Quality assurance features are available in all Multilizer versions. However, complete
testing of localization requires the possibility to build (2Build localized versions| p.
localized versions of software/content.

There are both automated and informative quality assurance features in Multilizer.
* Validation Wizard is an automated QA feature.

« Informative QA features give the user visual feedback, such as cell colors, on-line
statistics, etc.

Validation Wizard

Validation Wizard automates validation of common QA issues in localization. It includes a
comprehensive set of tests performed against localized versions of software/content.

Selecting Project->Validate Options... lets user choose the validation routines to run.
Results of validation can either be directed to log window, or it can be saved as a report
for later review. If validation settings differ from default options, they are stored in the
Multilizer project; this ensures that the same validation is applied consistently in the
project.

Multilizer Localization Guide 65

Validation types

vabdateAs |
[Trwes | fapant|
Sahin i o nledben Lisile

Mg bandshon &l |
¥ Inconelent loemst fimng
! Irreakd St of res e characien
w" Glidialp rcnabch Bl one: |
| Incomect spaling
! | ot of whihe space chanacien
' e o s
W Mo crdon
W Wi b
= Iresorrdent ey
W Ircordent hofosy chsescien
W Irvemisd haodicesy puaaiion
ot Dplrabs Sorsieinio
v Dioplcatn mare bl by
' Dphoats foom holosy
+ Diwerlapped corinos
w| Lismappad Comjsarerd

[| caxe Defo B

Figure 63: Selecting validations to perform.

Missing translation. This validation tells if native string is translated or not. This
validation is useful after re-scanning the project; the user will immediately get feedback of
the location of new strings.

Inconsistent format string. This validates that same formatting strings (arguments) are
present both in native string and translation. (Press %S to..., place holders)

Invalid amount of new line characters. This validates that the number of New Line (NL)
characters match in native string and in translation.

Glossary mismatch. This validation checks if translations match with translation memory
contents.

Incorrect spelling. This validation checks spelling using MS Office spell-check. For
further spell-check support, please refer to MS Office documentation.

Invalid amount of white space characters. This checks that both native string and
translation include the same number of White Spaces at string start and end.

Missing periods. This checks that both native string and translation include the same
number of periods at the end of the string. (Useful in menus; File...or Open...)

Missing colon. This validation checks that if native string includes a colon at the end,
translation should also. This is important, because label captions generally should include
a colon, and corresponding buttons should not. If native software follows these
guidelines, this validation ensures the same quality in localized versions.

Missing Tab. This validation checks if native string and translation have the same
amount of tab-characters.

Inconsistent hotkey. This validation checks if native string and translation have the
same amount of tab-characters.

Inconsistent hotkey character. This validation checks, if hotkey is valid. For example
hotkey can't precede a line break.

Multilizer Localization Guide 66

Invalid hotkey position. Hotkey can’t be the last character of a string.
Duplicate accelerator. Checks that there are no duplicated accelerators.

Duplicate menu hotkey. Checks that there are no duplicated menu hotkeys; in each
drop-down menu hotkeys must be unique.

Duplicate form hotkey. Checks that there are no duplicated hotkeys on the form or
dialog. The hotkeys must be unique on each form/dialog.

Overlapped controls. Checks that placeholders of visual controls are not overlapping.

Unmapped component. Checks that visual components are mapped to a visual
representation. This mapping ensures that 3rd-party and custom controls are shown
correctly in Wysiwyg. This validation is useful in highly component-based development
environments, such as Delphi (2 p. or Visual Studio .NET (2 p. for example.

In order to generate report of validation results, check Generate report on Report tab (=
lalidation reports] p. 7).

Working with validation results

Validation results are displayed in validation log of info page.

Multilizer Localization Guide 67

TIfl

E"Hllll.ll.lllrl‘..ﬂ it Prasgranm Files ' Mok iirer b hl:t'.[a(ql:'.ub'.[n:qkm _d_ﬂ!l
Fio [t Wew PFropect Qobeen Bow Took Hel
DEH RS i he A [FH| bmr =
B
5 i E-\eruludssic bisgrauy f
P LS EE LT LR PR R | ety - -
= = vawlorm ol alchdeake | I—. e n Ladha
= 2l Fodimee
+ O deae TWainlom |
H I Stings it
= 0 deake vispin |'
= =1 Fam
3 dialc mamform Tk b T
'3 Fomml Pl B 3
£ Shrge
Bl loggha Ty
M e el larigpuds Sy
-
Conleel Maliwe | Finmigh [=]
| #| Labal3 Test Cumani-locak
 #| Labal? Teat Diate-andlima Pararnaird ju wka
o Laball Teat Speadng s Tlirnpeyasakkn J
|515L1‘.nl11 Test ECakulale Laske i
1] | Ll Button]. TodTip Cakulaies the-werge-drra ;l
Lirwnsppeed Conigaored T ool "5 bty winschonrs Fowve: Stabud arFarel b ol been niapped =
Mo codon Fu| Parvsnamsp aks’ har no ' siing
Mo pobon | Ve b R i " sl J
Mo cobon Fau| Parcinasis g aka' hann '’ sing
|] [p— oy e e L I Ty :_I
[Log B valise
[T | | | Trarelated | #

Figure 64: Displaying validation results.
Quick fix
Multilizer offers quick fix for several validation issues. Just click Fix to have Multilizer

correct the issue automatically. If fix doesn’t correct the issue, you can still manually fix
the problem.

Navigation

When a row of validation log is clicked, corresponding translation is shown both in
translation grid and visual editor. In addition Project tree shows current node. This auto-
navigation feature makes it extremely fast to process validation results.

Change translation status

Whenever an issue is corrected, translation status should be changed to QAed (or any

other status used by the company). This makes it possible to later filter out validated
parts of project. (- [franslation Status] p. f9)

If you correct issues immediately, it's possible to make Multilizer change translation status
automatically; Select Tools>Options...>Status, enable Default status on select, and
set desired status. Now clicking a row in validation log will change status automatically.

Multilizer Localization Guide 68

GHAR.SET

Pseudo Languages

Multilizer includes comprehensive support for test and pseudo languages. Each language
in the project can be populated with pseudo translations. This enables complete
localization of software/content before translation of the project has even begun.

To use Pseudo translation, right-click language column and choose Fill Pseudo
Translation... (Main menu: Column->Fill Pseudo Translation...). This shows the
configuration dialog for Pseudo Translation.

Preude Tramlation £
S b lexd g
|F"F.l'|-'|'d'h?ﬂ}! ;I
O phira E scpaed ot debstl:
™ Emond Egoand [Laat [
[¥ Epclods in bracet
. Exparel paiceniage
I bewmatn Goen 18 [0 % n;[Em x
I Lipis cast B [0 % moek [0 x
¥ [ecris nafm = gwse[@ x
M sias rmrple Tosrislstiad sampls
Thiy s & sample best durerg
[0k | coed | pems | bee

Figure 65: Defining Pseudo Translation properties.

There are several tests with different purposes, and for detecting different issues. After
defining a test for a language, it can easily be turned on/off.

Cover

This test replaces all characters of a string with the same number of user-defined
characters. This test helps to detect potential Ul issues; it lets users immediately see non-
localized parts of the Ul, hence locating possible internationalization issues.

Minimum

This test replaces all strings with a single user-defined character. This test helps to detect
potential Ul issues.

Pseudo language

Pseudo language test is the most sophisticated test language. Besides allowing more
customization, it also helps in testing localization to different character sets.

Pseudo language supports single-byte LTR (left-to-right) character sets, single-byte RTL
(right-to-left) character sets, DBCS (Double-byte character sets), and Unicode®.

Informative QA features

Informative QA features give the user feedback of translations. The user’s responsibility
is to interpret the information, and understand possible issues involved.

Multilizer Localization Guide 69

Cell coloring

Cell colors give the user immediate feedback of relative change in the translation length;
the longer translation is compared with native string, the darker the shade of blue of
translation background.

Display of non-printing characters

In cell-editing mode, Multilizer shows non-printing characters exactly as in Microsoft
Word; this helps translators to see duplicated spaces, tabulators, etc.

Statistics panel
Statistics panel shows statistical info of native string and its translation.
Control boundary colors

In Visual Form editors, Multilizer displays control boundaries in red, if control size or
location is modified in localization. This helps to get a quick overview of changes in Ul.

Colors are applied as follows:

Left: Control has been moved horizontally.
Top: Control has been moved vertically.
Right: Control width has been modified.
Bottom: Control height has been modified.

For example, if localized control has been resized horizontally and moved horizontally,
control is shown with red boundaries at the left and right sides of it.

Translation Status

Each translation is Multilizer has a status. Status is shown in its own column, and as an
abbreviation in translation column.

Maintaining status information in localization project simplifies working with big projects.
As discussed earlier, translation status can be used for filtering project translations. In

addition, with appropriate use of status information, project reports (> p.
give a more realistic picture of entire project’s status.

Multilizer Localization Guide 70

Set status automatically

[E rsuitilizeer .00 - Lintitled _‘uﬂ
Els Edt YWesw Prolsct Colren Bosw Tools HEp
D@ H S| e AN FE &R b [=1 »
Al 21| | Mative - | Garenian | Status [=]
- W E Do inolepad S
= A Accelniators ¥ __ﬂ
B WAINALCT []
% supupacs |4 £
=1l Db | |
BEn | &
E 12 al W Lt
BHu E.-'dl Fikes J
__\'IE HPFSAYEDRA .| ansEl
Brq (8] Cancel Adieuchen o travslated |
. a| Cancel Ahbtwechen " Ao Iranslaled
B [=
y s| Cancel Abtwpchen * Mano tranclaled
s [
B Cannol-accass-yourpeebes |
MAs Ba-sure-that- your protesis
= #| connecied propardy-and-usa
e prapary
07 A | Candnol Panal-torwenfy-that-1ha
D 8 primaris-configured proparly
4 W Cannil cary ol e 'Wand Wiap
:ﬁ"""’ _i | #| command because there 100
gy mertenene -
Hoatrem Gmrmas Mhaz Snlected inm
Arwooet 0 Tisnolsted ey 24 T et bsrarlabe™ 1pass: 1 [rmts bope Shwg
Shingg courd S0 el rirees: T4 M o e 28 Mz bergth [
word oot 453 | Fe kY | Uressed ioez [Tiandséion ergth 3
| Lipesd s 0
Log | Y Velden T Samivtics |
[z | [ke brandated | .

Translation Status changes automatically when translating:

* When using glossaries, Translaiton Memory, or using duplicates, translation status
become 'Auto translated'.

« When translating manually, status becomes ‘Translated’.
Aforementioned statuses can be modified (Main menu: Tools>Options...>Status).
Set status manually

When validating a Multilizer localization project, the QA person needs to set status either
to QAed or to Ready (just before release).

There are several ways of setting status:
« Right-click translation, and set status.
« Toggle status by clicking space bar on cell in status column.
* Toggle translations status with Ctrl+T.

e Set status by selecting cell. You need to enable 'Default status on select' for this
option (Main menu: Tools->Options...>Status).

Multilizer Localization Guide 71

Reports
Multilizer produces two kinds of reports:
« Project reports with statistics of project.
« Validation reports with statistics of last validation.

All reports that Multilizer produce are in XML format. This ensures that the data can easily
be imported in other systems, such as corporate resource-management systems.

Project reports

Multilizer Project reports (Main menu: File->Project Report...) give a good insight in
localization project status; it shows translation counts by status, and groups localizable
items by targets and by languages.

Projectheport kT
Page Larjiags
o [Cumend pagsl 5 Cunint larguagsi:]
o Al pages ™ Al lrgunges
Dyl

' Inchude legend i e mpot
Fer Wi D iaicd® il i il i

Gy mompar By
E =]
| Ok I Canced Dl | Hsip |

Figure 66: Project report.

Validation reports

In addition to showing validation results on-line, Multilizer can write out detailed validation
reports. To generate a report select Project->Validate As..., and select Report tab.
Check Generate report.

Multilizer Localization Guide 72

rabdatens X
Types H‘ﬂn'l‘ll
T thasie bk, oton: o 1 2t Jalisd i wililitionr il i

7 Fenmteperd

il nane
| "Frogram Fiesbauliices Bt Doalc b Do amd =
(=TSP

[= | coxe Do Heip

Figure 67: Validation report options.

Validation reports show results by validation types, by localization targets, and by
languages.

Validation report can be either shown immediately, or any time later by selecting
Project->Validation report....

Modifying reports

Report data is displayed using XSL (XML Style sheet). Users can change the layout by
applying another style sheet to the report. In order to change style sheet reference of
generated XML, select Project->Options....

rrojeceoptions k]
Eﬂwlml

Sk chil
Jouhaedoompany sl

~ Enchusde syings thel conbsn onky the olosing charsstes
Fm'.:-.-us-m-:.:u-__ framd | [] [T *ERbaD-

A bt spasces to bo sbowve sk

I Tisnsdsie cuplicsies shngs afier e soan
I~ Frojet it in tha bandate sy moda

Figure 68: Specifying style sheet for reports.

By specifying style sheet location, Multilizer will generate all reports with referral to the
specified one. If Style sheet field is left empty, Multilizer uses default style sheet.

Multilizer Localization Guide 73

Build localized versions

Required product(s): Multilizer Enterprise

Multilizer for Windows
Multilizer for .NET

Multilizer for Visual C++
Multilizer for VCL

Multilizer for Java

Multilizer Translator Edition Pro

User’s role in process: QA personnel

Wizards: None

Build is the last step in the Multilizer localization process; it creates localized items of
targets.

How does build work

Localized software items are created by reading original software, and writing localized
items using localization information found in the Multilizer project. Multilizer never
overwrites the original software. The result of localization depends on the software
platform and type; refer to the tutorials for detailed information.

Localized data files are created by reading the original data file, and writing localized data
files using localization information found in the Multilizer project. The structure of a data
file remains exactly the same. Multilizer never overwrites original data files.

In database localization, localized data is written either in new records, localized tables,
or localized fields. The way Multilizer works depends on the database localization type.
Refer to the database localization tutorial for more info.

Multilizer Localization Guide 74

This part includes tutorials for localizing software/content on specific platforms, and each
tutorial describes the respective target in depth.

Tutorials:

e Windows tutorial
Localization of Windows binaries (EXE, DLL, OCX) that include standard Windows
resources. (Software is most commonly developed with Visual C++)

e VCL tutorial
Localization of Windows binaries (EXE, DLL, OCX) developed with Delphi or
C++Builder.

e .NET tutorial
Localization of Visual Studio .NET projects, C#Builder projects, or individual ResX
resource files.

« Database tutorial
Localization of database contents.

¢ XML tutorial
Localization of XML-files.

e Source localization
Localization of single source files.

« Datafile localization
Localization of INI, SHL, and Key (TXT) files.

Multilizer Localization Guide 75

Windows Tutorial

This tutorial describes localization of Windows software.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for Visual C++

Sample(s): <mldir>/VCPP/dcalc

Tutorial(s): -

Because the resource format is the same for Windows software and Windows CE
software, both can be localized using binary localization. For testing Windows CE
software, Multilizer supports running localized software in emulator.

* To learn the basics of localization of Windows (C++) software and localization
prerequisites, go through the entire tutorial. It requires that you have Visual C++ (4-6)
or eMbedded Visual C++ installed on your computer.

> [niroduction] p. 5]

e To learn how to use Multilizer for Windows software localization, you can localize any
of the sample applications.
> Ereate Multilizer Project] p.

Introduction

For localization of Windows software, Multilizer supports both binary- and RC-localization.
Binary localization applies directly to software executable, and RC-localization is done on
source code (RC and RC2 files). Binary localization projects are simpler to maintain,
because the amount of files to localize is much smaller than in RC-localization.

Localization requires that all localizable data is put in resources during development. This
is normally the case in developing Windows software with Visual C++, for example.

Binary applications, libraries, or components contain the resource data in the application
files (e.g., .exe), library files (e.g., .dll), or component files (e.g., .ocx). Multilizer creates
the localized application files from the original file. The following picture describes the
binary localization process:

Multilizer Localization Guide

76

Native resources

Project file

Translated
Project file

Application ? E) E}

Multilizer
applicatio

Multilizer Builder or
application Multilizer

Programmer

|l

Translators Programmer

Figure 69: Binary localization process.

Application

English resources

on

German resources

French resources

or

The programmer uses Multilizer to extract localizable resources from the original
application file (1). Multilizer saves these to the project file. The programmer sends the
project file to the translator(s) that use Multilizer to translate the project file (1). The
programmer uses Multilizer or Builder to create the localized application files (2). As a
result, there will be one application file for each localized language and/or a single binary
file containing all languages.

Open Tutorial Application

Application

English resources

German resources

French resources

We could start from scratch but in most cases it is a completed application or at least

some specific application under construction that you want to globalize. This is what we
are going to do. The <ml di r >\ VCPP\ Sanpl es\ Tut ori al \ dcal c. dsw contains the
project file of Dcalc sample application for Visual C++. Compile and run the application.

The application should look like this:

[Driving Time Calculator

— Diiving diztanice

I in kilometres

—&verage diiving speed

|1 0o km/h

Speeding fine:
D ate and hime:
Current locale:

Izer interface

language:

£500

0E/07./2001 08:13:44
Englizh [LIK]

Englizh

Calculate

X

Figure 70: Driving time calculator with English user interface.

The <ml di r >\ EVCPP\ Sanpl es\ Tut ori al \ dcal c. vcwcontains the project file of
Dcalc sample application for Embedded Visual C++. Compile and run the application.

The application should look like this:

Multilizer Localization Guide 77

E::Elrn'nr.j Time Caloulator 9254 ok
- Dirivire disLance

| kiomatnas

- Ayarape driving speed ————————
- kmih

[Cakulate | | sbout

Speadirg fine: ES00

Date and tima;
DEy 072001 082454

Locale: Englsh LK)
Languiags; Engish

Figure 71: English Visual C++ Windows CE application.

The user interface language is UK English and the applications use UK format with
currency, date and time. In the following chapters, we will turn Dcalc into a truly
multilingual application, step-by-step.

Internationalization

This chapter describes the binary internationalization process. Internationalization is the
process of generalizing a product so that it can handle multiple languages and cultural
conventions without the need for re-design; re-engineering source code so that products
and applications are compatible with country-specific operating systems and software.
Internationalization (I18N) takes place at the level of program design and document
development.

Open the Tutorial application, <m di r >\ VCPP\ Sanpl es\ Tut ori al \ dcal c. dsw, or
<m di r >\ EVCPP\ Sanpl es\ Tut ori al \ dcal c. vcw.

Study the source code of the application to familiarize yourself with it. It is not a complex
application, so you should get the idea fairly quickly.

The most important part of the internationalization (I118N) is resourcing. This means
removing all hard coded strings from the application’s source code. Traditionally, hard
coded strings are turned into resources by moving the strings from the actual code into
the resource strings.

Select the ResourceView sheet. Select the dcalc resource leaf from the tree and click the
right mouse button. Choose Insert. The Insert Resource dialog appears.

Multilizer Localization Guide 78

Insert Resource - ilil
Resource tupe: Mew
G Accelerator
& Bitnap [rmpart... |
- Curzor
.. Dialag ﬂl
@ HTML Cancel |
3 leon
B Menu
N Stiing T able
=8 Toolbar

Yerzion

Figure 72: Insert Resource dialog box.

Select String Table resource and press New. The String Table editor appears. Add the
following resource strings to the table:

=l alind - Sbring Talls [Meaiteal] {Stoing Tabshe) _..JEIEI

_ ve B nob s vebd delanosd
105 _MYalD_SPEED 102 | "Es" i not o velbd speed
105 _RESULT 14 | The svarage dmeng bne is 5d bows and 5d merede:
105 _HETRIC_LMSTAMCE 105 | i lreslees
105 _LEs_DISTAMCE 10 | i el
105 _MHETRIC_SFEED 107 | kmsh
|05 _Les_SPEED 102 | mph
105 _LEMGLIAGE 10F3 | Erglich
105 _MFORSMATION 1100 | Indcamastion

Figure 73: String Table editor.

The next step is to set the right value to the user interface labels. The original application
shows the speeding fine in Pounds, the date and time in UK format, the locale and
language labels have been hard coded to English (UK) and English. In addition, the
application requires the input in kilometers and in kilometers per hour.

An essential part of internationalization is to make the code locale independent. This
means that the code is not hard coded to a single locale (e.g., English (UK)) but works
with any locale.

Windows contains NLS API. It is a collection of locale functions that have access to the
locale database. GetLocalelnfo function is used to get locale specific data such as
measurement system, data format, etc.

To prepare your code to locale enabling, we have to write some helper functions.

Multilizer Localization Guide 79

Vi sual

C++

voi d CDcal cDl g:: Set Label (int control, int resourceld)

{
CString str;

str.LoadString(resourceld);
Set Dl gl t enTText (control, str);

}

voi d CDcal cDi g:: Set Local eLabel (int control, int |ocaleltemd)

{
int len = GetLocal el nfo(LOCALE_USER DEFAULT, |ocaleltenmd, NULL, 0);

LPTSTR str = (LPTSTR)nmal l oc(len + 2);

CGet Local el nf o(LOCALE_USER DEFAULT, |ocaleltemd, str, len);
Set Dl gl t enTText (control, str);

free(str);
}
int CDcal cDl g:: GetLocalelnfolnt(int |ocaleltemd)
{
int |en = GetLocal el nfo(LOCALE_USER _DEFAULT, |ocaleltenmd, NULL, 0);
LPTSTR str = (LPTSTR)nmal l oc(len + 2);
Cet Local el nf o(LOCALE_USER DEFAULT, |ocaleltemd, str, len);
int value = atoi(str);
free(str);
return val ue;
}
voi d CDcal cDl g: : Set Label (int control, int resourceld)
{
CString str;
str.LoadString(resourceld);
Set Dl gl t enTText (control, str);
}

voi d CDcal cDi g:: Set Local eLabel (int control, int |ocaleltemnd)

{
int len = GetLocal el nfo(LOCALE_USER DEFAULT, |ocaleltem d, NULL, 0);

LPTSTR str = (LPTSTR)nal l oc(len + 2);

Cet Local el nf o(LOCALE_USER DEFAULT, |ocaleltemd, str, len);
Set Dl gl t enTText (control, str);

free(str);
}
int CDcal cDl g:: GetLocal elnfolnt(int |ocaleltemd)
{
int len = GetLocal el nfo(LOCALE_USER _DEFAULT, |ocaleltenmd, NULL, 0);
LPTSTR str = (LPTSTR)nmal l oc(len + 2);
Cet Local el nf o(LOCALE_USER DEFAULT, |ocaleltemd, str, len);
int value = _wtoi(str);
free(str);
return val ue;
}

SetLabel function sets the label of a user interface element to a value found from the
resource string. SetLocaleLabel sets the label of a user interface element to a value
found from the locale database. GetLocalelnfolnt function returns an integer value from
the locale database.

Now we can update the user interface items to match the current locale. Keep in mind
that the system has a default locale. This locale is given to all applications currently
running. You can change the default locale from the Control Panel.

Multilizer Localization Guide 80

Vi sual

C++

OnlInitDialog method is used to initialize the dialog box. Add the following code to the end
of the OnlnitDialog method.

Setlocale function sets the formatting functions of the C run-time library to use the default
locale. The original Dcalc uses kilometers and km/h. In United States, miles and miles per
hour are used. LOCALE | MEASURE value of the locale database contains the
measurement system of the locale. GetLocalelnfolnt gets the measurement system. If the
system is metric, kilometers are used otherwise miles are used.

There are four different ways to show the currency value. They are 500 $, 500%, $500,
and $ 500. You can put the currency label before or after the value and use a space
between or not. LOCALE | CURRENCY value if the locale database contains this
information. The switch-case block formats the speeding fine according to the current
locale.

CTime class has the Format method that returns the date and time as a string that has
been formatted according to the current locale.

The final step is to update the locale and language labels. LOCALE_SLANGUAGE
returns the current locale as a string. IDS_LANGUAGE resource string contains the name
of the language in its own language (e.g., English, Deutch, suomi).

BOOL CDcal cDi g:: Onl ni t Di al og()

{
/1 Sets the local e depend format function to use the default |ocale
setl ocal e(LC_ALL, "");
/1 CGets the neasurenent system
/1 Sets the Driving distance |abel: kmor nles
/1 and the Average driving speed label: kmh or nph
i f (GetLocal el nfolnt(LOCALE_| MEASURE) == 0)
{
Il Metric
Set Label (1 DC_DI STANCE, |DS_METRI C_DI STANCE) ;
Set Dl gl t enilext (1 DC_SPEED EDI T, "100");
Set Label (1 DC_SPEED, | DS_METRI C_SPEED);
}
el se
{
/1 US
Set Label (1 DC_DI STANCE, |DS_US DI STANCE);
Set Dl gl t eniText (1 DC_SPEED EDI T, "65");
Set Label (| DC_SPEED, | DS_US_SPEED);
}
/1 Set the fine value: $500, 500 nk, etc
int len = GetLocal el nfo(LOCALE_USER DEFAULT, LOCALE_SCURRENCY, NULL,
0);

LPTSTR currStr = (LPTSTR)nal | oc(len + 2);

CGet Local el nf o(LOCALE_USER _DEFAULT, LOCALE_SCURRENCY, currStr, len);
LPTSTR buffer = (LPTSTR)mal l oc((strlen(currStr) + 5)*sizeof (TCHAR));
{swi tch (GetLocal el nfol nt (LOCALE_| CURRENCY))

case O:

Multilizer Localization Guide

81

sprintf(buffer, "9%500", currStr);
br eak;

case 1.
sprintf(buffer, "500%", currStr);
br eak;

case 2.
sprintf(buffer, "% 500", currStr);
br eak;

case 3.
sprintf(buffer, "500 %", currStr);
br eak;

}

Set Dl gl tenTText (I DC_FINE, buffer);

free(currStr);

free(buffer);

/] Set the date and tinme

Set DI gl t enTText (| DC_DATETI ME, CTine:: CGetCurrentTine(). Format("%"));

/1 Sets the current |ocale and user interface | anguage

Set Local eLabel (1 DC_LOCALE, LOCALE_SLANGUAGE) ;
Set Label (| DC_LANGUAGE, | DS_LANGUAGE) ;

return TRUE;
}

OnlnitDialog function in the Embedded Visual C++ is almost identical. We use
COleDateTime instead of CTime.

BOCOL CbDcal cDi g: : Onl ni t Di al og()

{
CDi al og: : Onl ni t Di al og();

Set | con(m_hl con, TRUE);
Set |l con(m_hl con, TRUE);

/1 CGets the neasurenent system
/1 Sets the Driving distance |abel: kmor mles
/1 and the Average driving speed | abel: kmh or nph

i f (GetLocal el nfolnt(LOCALE_| MEASURE) == 0)

{
/1 Metric
Set Label (1 DC_DI STANCE, | DS_METRI C_DI STANCE) ;
Set DI gl t enfText (1 DC_SPEED _EDI T, L"100");
Set Label (1 DC_SPEED, | DS_METRI C_SPEED) ;

}

el se

{
/1 US
Set Label (1 DC_DI STANCE, | DS_US DI STANCE) ;
Set Dl gl t enTText (| DC_SPEED EDI T, L"65");
Set Label (1 DC_SPEED, | DS _US_SPEED) ;

}

/!l Set the fine value: $500, 500 nk, etc

Multilizer Localization Guide 82

int len = GetLocal el nfo(LOCALE_USER DEFAULT, LOCALE_SCURRENCY, NULL,

0);
LPTSTR currStr = (LPTSTR)nal | oc(len + 2);
Cet Local el nf o(LOCALE_USER _DEFAULT, LOCALE_SCURRENCY, currStr, len);
wchar _t buffer[20];
switch (GetLocal el nfol nt (LOCALE_| CURRENCY))
{
case O:
swprintf(buffer, L"9%500", currStr);
br eak;
case 1:
swprintf(buffer, L"500%s", currStr);
br eak;
case 2.
swprintf(buffer, L"% 500", currStr);
br eak;
case 3.
swprintf(buffer, L"500 %", currStr);
br eak;
}

Set Dl gl t enTText (I DC_FI NE, buffer);
free(currStr);

/1l Set the date and tine

Set DI gl t enTText (| DC_DATETI ME,
CO eDateTinme::GetCurrentTinme(). Format());

/1l Sets the current |ocale and user interface | anguage

Set Local eLabel (I DC_LOCALE, LOCALE_SLANGUAGE) ;
Set Label (| DC_LANGUAGE, | DS_LANGUAGE) ;

Cent er W ndow(Get Deskt opW ndow()) ;

return TRUE;
}

The CalculateButtonClick event needs a little bit more rewriting. Let’s study the code that
generates the driving distance message:

text = CString("The average driving time is ") +
itoa(hours, bufferl, 10) +
hours and " +
itoa(m nutes, buffer2, 10) +
m nutes.";

This seems to be just OK, but it will actually make the localization hard or even
impossible. The reason is that the above logic assumes that the message always starts
with the “The average driving time is “ string, and then contains the hours, hour label,
minutes, and minute label. However, not all languages use the same order of words in a
sentence. For example, the order might be: minute label, minutes, hour label, hours, and
text part. Reordering of the parts of the message is impossible if we use the code shown
above.

Fortunately, we can use CString’s Format function. It uses message pattern that contains
placeholders for the dynamic parameters. At run-time, the function combines the pattern
with the parameters to compose the message. Because the pattern is a single string, it

Multilizer Localization Guide 83

can be added to the resource strings, and it can then be translated as a single item. The
following code contains the internationalized CalculateButtonClick event:

voi d CDcal cDl g: : OnCal cul at e()

{

/1 Calculates the driving tinme and shows it in a nessage box

CString text;

CString distances;

CString speedsS;

CGet Dl gl t enTText (1 DC_DI STANCE_EDI T, di st anceS);

Get Dl gl t enTText (| DC_SPEED EDI T, speedS);

int distance = atoi (distanceS);

i nt speed = atoi (speedS);

if (distanceS == "" || distance < 0)
text.LoadString(!lDS_I NVALI D_DI STANCE) ;

else if (speedS == "" || speed <= 0)
text.LoadString(!DS_I NVALI D_SPEED) ;

el se
int hours = distance/ speed;
int mnutes = (int)(((double)distance/ speed - hours)*60);
text. Format (1 DS_RESULT, hours, m nutes);

}

CString str;

str.LoadString(lDS_|I NFORVATI ON) ;

MessageBox(text, str);

}

The dialog resource contains several strings that are obsolete because they all get set at
run-time. A good practice is to replace these strings with “dummy* strings and then
exclude these strings from the localization project.

fi= dealere - ID_DCALE_DIALOG [Meistral] (Diakog) =1o] =

(R R B

Figure 74: Replace dynamic items with dummy strings.

Most translations get longer when translated from English to other European languages.
The final internationalization step is to change the user interface in such a way that it can

Multilizer Localization Guide 84

NOTE!

accommodate long translations. The easiest way is to set every user interface item as
wide as possible. The following figure contains the reworked user interface.

o=
7 T T L
|]
_-. Driving diiance " o a i
2| DS Do 2
a-mng:dr.msﬁn:l . d
ca il i
CEpatding e odwy o
R T
g | e snsnne osns uann;
B H W l il
_- Dllser wierface larguage: vy . u

Figure 75: Resize dynamic items for long translations.

We now have internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Create Multilizer Project

In order to localize Windows or Windows CE software, you have to create a Multilizer
project. This is described in the first part of the manual, in the chapter ‘Create Project|’ p.

What you need to do is to simply let Project Wizard guide you in this.

Specify Localization options

After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful — and follow Windows suggested way of
localization — but in this tutorial, we will review the options.

Right-click the localization target in Project Tree, and click properties to see Windows
Binary File Target options.

All Windows software-specific options are gathered under the Windows Binary File Target

dialog. If there are many targets in one project, you can set different localization options
to all, if needed.

Encodings

Encodings tab lets you specify codepages for target languages. In addition, you can force
Multilizer to read the localization target with certain language and codepage settings.

Normally default values should be used; they are based on the information that Multilizer
detects from the Windows software.

Multilizer Localization Guide 85

Windows Binary File Target x|

— File
ID:'&BIN hl5, 1. 89 CPPYS ampleshbinaryhdzalchdicals. exe J
— Optionz
Encaodings | Clutput I Fontz I Resources I Flatform I
I ative language: I ative encoding:

English IWindDws Western Europe [1252] j
Lanquage | Encading |
Firnizh YWindows YWestern Europe [1252)
Englizh Windows Western Europe [1252]

] 4 Cancel Default Help

Figure 76: Encoding options for target languages.

Output

The far most important option in localization is to specify location and type of localized
files.

Multilizer Localization Guide

86

NOTE!

Windows Binary File Target x|

~ File

DB sml5.1 . 89 EPPYS ampleshbinaryhdcalcdealc. ex

— Optionz

Oukput dir;

Encodings Cutput I Fonts I Hesnurcesl F'Iatfu:urml

— Output files

v Localized files
[Besource files
[Multilingual file

ID:'\EIN'\mIEJ ABPWCPPYS ampleshbinandoalc

Resource file options
¥ | Coppiall resounces

¥ iite bo oot directon

Type:
LCoding:

— Localized file name

I Sub directany

=

f Multiizer

Finnizh [Finland] zample:

=

Country separatar; I_

Application.exe -> fi FItApplication. exe

Lacale separator: I_

Ok

Cancel

Default Help

Figure 77: Output options for localized files.

The following example figure shows the files that Multilizer uses on the C++ binary
localization process in Windows:

Application file

sample.exe

@
>

Project file

sample.mpr

@
>

Localized application files

en/sample.exe en/sample.ENU all/sample.exe
de/sample.exe de/sample.DEU
frlsample.exe fr/sample.FRA

Figure 78: The files of the binary C++ localization process in Windows.

When deploying the application, you can either deploy the localized binary file (e.g.,
de\ sanpl e. exe), the multilingual binary file (al I \ sanpl e. exe), or the original binary
file (e.g., sanpl e. exe) and the localized resource DLL(S) (e.g., de\ sanpl e. DEU).

By default, Multilizer creates localized files. It creates subdirectories under the original file
folder containing the localized file(s). l.e., there might be subfolders called ..\en\<localized
file> and ..\fi\<localized file>.

Besides applications built with C++, Multilizer binary localization type can be applied to
applications compiled with other compilers. Multilizer automatically detects projects
compiled with Delphi, C++Builder, and Visual Basic. Refer to the corresponding tutorials,
if you localize applications with any of the aforementioned compilers.

Fonts

On Fonts tab, the user can specify the font of the localized software. Furthermore, rules
can be set to apply fonts on certain conditions.

Multilizer Localization Guide

87

Default settings are recommended, because they are strictly based on Windows
standards.

Windows Binary File Target x|

— File
ID:'&BIN hl5, 1. 89 CPPYS ampleshbinaryhdzalchdicals. exe J

— Optionz

Encodings | Output Fonts |F|esu:-un:es| F'Iatfu:urml

Localize fonts:

Fonts to be uzed:

Script | Fant nane | Size =~ Edit... |
Arabic Anial 10

Armienian 10

Chineze, simplified Tahoma 1 =

Chineze, traditional — Terminal 10

Cyrillic Arial 10

Devanagar 10

Dhives akur 10

Georgian m -

1 | »

] 4 Cancel | Default | Help

Figure 79: Font options for localized software.

Resources

On Resources tab, you can specify what kind of resources you want to localize.
Multilizer detects the resources of the Windows executable, and lets the user choose

what to localize. Typically dialogs and string resources are localized, because both
contain texts that need translation.

Multilizer Localization Guide 88

Windows Binary File Target x|

— File
ID:'&BIN hl5, 1. 89 CPPYS ampleshbinaryhdzalchdicals. exe J

— Optionz
Encndingsl Dutputl Fonts Resources |F'Iatfu:urm|

[] Bitmap resource [RT_BITMAP)
L] Cursor rezource [RT_CURSOR
[alog rezource (BT DIALG]
[] Group cursor resource [RT_GROUP_CURSOR)
[Group icon resource [RT_GROUP_ICOM]

[1 leon resource [RT_ICOM)

Stiing resource [BT_STRING]

[] Yersion resource [RT_VERSIOM)

] 4 Cancel Default Help

Figure 80: Specifying the resources types to localize.
Platform

Platform tab shows the target platform of the localized software. Multilizer sets the values
automatically when creating a project, so these settings shouldn’t be changed.

Multilizer Localization Guide 89

Windows Binary File Target x|

~ File
ID:'&BIN hl5, 1. 89 CPPYS ampleshbinaryhdzalchdicals. exe J
— Optionz
Encodingz I Clutput I Fontz I Flesources Flatform
" Windows CE
— CPU Files
Add...
Hemave
] 4 Cancel Default Help

Figure 81: Specifying the platform of localized software.

Translate Project

For testing purposes, you can translate the software by using pseudo languages (C.f.
Pseudo language| p. ; right-click language column, choose properties, and select the
pseudo language options. This will fill the translation grid with pseudo language
translations.

Wysiwyg

Besides just translating, Multilizer allows editing of Ul (user interface) elements. This is
useful in cases, where the original software was not designed for localization, and
translated strings don't fit in the placeholders.

Translation with Multilizer showing visually the changes in Ul is referred to as Wysiwyg in
this manual.

Multilizer Localization Guide 90

Bl [de Jearch Ve Promd [ock Help

ODFR/A& £ e &4 BBE F[fo - b
B desk i
=} &4 Diddass Duiwing | imi Caboubshod
3w - Loa | = .
= | durse = Lacks
= W
=] Stengr) ipaad
iy
Speedra e dureTe
[Cistes et birms: LT
Cigrerdt ko sk duirig
1) s el o Larepsinye: duirig
Contax | Piative | Finmish
| T Dviwieny Time Cakcidaton
B 1 Taxl Caleulale Lazke
| A2UGET 295 Teak Drwirey diglance

Figure 82: Localizing forms visually.
More info

Refer to the following parts of the manual for more information on translating software,
and sharing translation work between team members:

MORE INFD]

« Pre-translate project| p. 5]

« Prepare project for translation] p. p6]

+ Bhare translation work] p.
. p.
Build Localized Versions

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files based on the target options (>Output] p. B5).

Finally, you can run the localized application by right-clicking the column header (e.qg.,
Finnish) and by choosing Run.

Multilizer Localization Guide

91

[Ajoaikalaskin : x|

— Ajomatka

I kilometreizza Ajomatk.a

— keskimaarainen ajonopeus

|1 0o km/h

Ylinopeuszakko: SO0 k.

Faivamaars ja aika: 0E.07. 2001 16:48:40
Paikallinen lak.aali: Finnizh

k- ayttolittprnarn kiel: FLIOMI

Figure 83: Localized Dcalc application (Windows).

Localized Windows CE version should look like this:

£ Ajoaikskaskin

1:34p &)

+ Anna aomatks

——

Laste

Vinopes sk
PErd o sk
Eiybetty bolossk:

Klreutty kiek:

§500. 00
100N 1 :34:50 P

UFTHTT

chinre

Figure 84: Localized Dcalc application (Windows CE).

Multilizer Localization Guide

92

VCL Tutorial

This tutorial describes localization of Delphi and C++Builder software.

Required product(s):

Multilizer Enterprise
Multilizer for Windows
Multilizer for VCL

Sample(s):

<mldir>/vcl/delphi/dcalc
<mldir>/vcl/CBuilder/dcalc

Tutorial(s):

e To learn the basics of localization of Delphi/C++Builder software and localization
prerequisites, go through the entire tutorial. It requires that you have Delphi (2-7) or

C++Builder installed on your computer.

> [Froduction] p. B2

e To learn how to use Multilizer for Delphi/C++Builder software localization, you can

localize any of the sample applications.

- Ereate Multilizer Project] p.

Introduction

This tutorial is written for Delphi 7, and C++Builder 6. Using an older version is almost

identical. Some menu commands may vary.

Compiled VCL applications (.exe or .dll) contain resource data. When doing binary
localization, Multilizer scans the original binary files and creates localized binary files as
copies of the original files. The following picture describes the binary localization process:

Application

Native resources

Figure 85: Binary localization process of a VCL application.

Multilizer
application

Programmer

Translated
Project file

ECE

Multilizer
application

i

Translators

Builder or
Multilizer

Programmer

English resources
German resources

French resources

or

Application

or English resources

German resources

French resources

Application | _

English resources

=)

German resources

French resources

The programmer uses Multilizer to extract strings from the original binary file(s) (1).
Multilizer saves these strings to a project file. The programmer uses Multilizer to send the

Multilizer Localization Guide 93

project file to the translator(s) who uses Multilizer to translate the project file, and then
sends the translated project file back to the programmer (2). The programmer then uses
Multilizer to create localized binary files (3). As a result, there will be one resource file for
each localized language. Multilizer can also produce a single multilingual binary file
containing all the languages of the project, or one binary file for each language.

Open Tutorial Application

We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. The

<m di r>\vcl \ <conpi | er >\ dcal c\ dcal c. dpr contains the project file of the Dcalc
sample application. <compiler> is Delphi, or CBuilder depending on your compiler.
Compile and run the application. By default, Dcalc uses the English language.

The application should look like this:

- Driving Time Calculator,

File Help

Drriving distance

it kilormetres Calculate

Average driving speed

100 krn/h

Speeding fine; £a00

Date and time: 21412/200213:44:35
Current locale: Default

Izer interface language; Englizh

Figure 86: Dcalc application using an English user interface.

The user interface language is English (UK) and the application formats currency, date
and time according to English (UK) standards. In the following chapters, we will turn
Dcalc into a truly multilingual application, step-by-step.

Internationalization

This chapter describes the internationalization process. Internationalization is the process
of generalizing a product so that it can handle multiple languages and cultural
conventions without the need for re-design; re-engineering source code so that products
and applications are compatible with country-specific operating systems and software.
Internationalization (I18N) takes place at the level of program design and document
development.

Open the Tutorial application,
<m di r >\ <conpi | er >\ Sanpl es\ Tut ori al \ dcal c. dpr.

Study the source code of the application to familiarize yourself of its behavior. It is not a
complex application, so you should get the idea fairly quickly.

The main form contains some labels that are locale dependent. The label on the right
side of the edit box contains the distance unit. Not every country uses kilometers. That's

Multilizer Localization Guide 94

why we must update the label at run-time using a resource string, to make sure that a
correct unit is used. Similarly, we assign the screentip text of the edit control and the label
containing the current language at run-time. We could add the initialization code into the
OnCreate event of the main form but let’s prepare the run-time language switch and write
a separator function for the initialization.

Multilizer Localization Guide

95

Delphi

C++Builder

procedure TMai nForm I ni t From
resourcestring

SLanguage = 'English';

SDefault = 'Default';
SMetricDi stanceHint = 'Gve the driving distance in kilonetres';
SMetricSpeedHi nt = 'Gve the average driving speed in kil onetres per
hour' ;
SMetri cDi stanceLabel = "in kilonetres';
SMet ri cSpeedLabel = 'km h';
SUsDi stanceHint = 'Gve the driving distance in nmles';
SUsSpeedHint = 'G ve the average driving speed in miles per hour';
SUsDi st anceLabel = "'in mles';
SUsSpeedLabel = ' nmph';
begin

Application. OnHi nt := DisplayH nt;

Speedi ngFi ne. Caption := Format (' %, [500.0]);
Current Ti ne. Caption := DateTi meToSt r (Now) ;

Current Local e. Caption : = GetlLocal eStr(
LOCALE USER DEFAULT,
LOCALE_SNATI VELANGNANME,
SDef aul t) ;

Cur r ent Language. Capti on : = SLanguage;

i f Get Measurenent System = ivnsMetric then
begin
Di stanceEdit.H nt := SMetricDi stanceHi nt;
Di st ancelLabel . Caption := SMetri cDi st ancelLabel ;

SpeedEdi t . Text '100';
SpeedEdi t. Hi nt SMet ri cSpeedHi nt ;
SpeedLabel . Caption : = SMetricSpeedLabel ;
end
el se
begin
Di stanceEdit. Hint := SUsDi stanceHi nt;
Di st ancelLabel . Caption : = SUsDi st anceLabel ;

SpeedEdi t . Text ' 65';

SpeedEdi t. Hi nt SUsSpeedHi nt ;

SpeedLabel . Caption : = SUsSpeedLabel ;
end;

end;

void _ fastcall TMainForm:InitForm()

{

Application->OnH nt = DisplayH nt;

Speedi ngFi ne- >Caption = Fornat ("%, OPENARRAY(TVarRec, (500.0)));
Current Ti ne- >Capti on = DateTi meToStr (Now));

Current Local e->Caption = GetLocal eStr(
LOCALE_USER_DEFAULT,
LOCALE_SNATI VELANGNAME,
LoadStr (SDhefault));

Cur r ent Language- >Capti on = LoadStr (SLanguage);
i f (GetMeasurenent System() == ivnsMetric)
{
Di stanceEdit->H nt = LoadStr(SMetricDi stanceHi nt);
Di st ancelLabel ->Capti on = LoadStr(SMetricDi stancelLabel);

SpeedEdi t - >Text = "100";

Multilizer Localization Guide 96

C++Builder

SpeedEdi t->Hi nt = LoadStr (SMetricSpeedHi nt);
SpeedLabel - >Capti on = LoadStr (SMetri cSpeedLabel) ;

}

el se

{
Di stanceEdit->Hi nt = LoadStr (SUsDi stanceH nt);

Di st ancelLabel ->Capti on = LoadStr(SUsDi st ancelLabel) ;

SpeedEdi t - >Text = "65";
SpeedEdi t->Hi nt = LoadStr (SUsSpeedHi nt);
SpeedLabel - >Capti on = LoadStr (SUsSpeedLabel) ;

}
}

The most important part of internationalization (I18N) is resourcing. This means removing
all hard coded strings from the application’s source code. Traditionally, hard coded
strings are turned into resources by moving the strings from the actual code into resource
strings.

Delphi makes this extremely easy because of its built-in support for resource strings, with
the resourcestring clause. It defines one or more resource strings. The resourcestring
block contains the resource strings used in the function. If you are not familiar with
resource strings in Delphi, refer to the VCL documentation. To put it briefly, you use them
almost exactly as you would use string constants.

With C++Builder, things are a little bit more complicated because you have to use the old-
fashioned resource scripts. The following paragraph contains the resource script header
file dcal cr es. h. It specifies the ID of each resource string.

#defi ne SAbout Msg 0
#def i ne SLanguage 1
#def i ne SDef aul t 2

#define SMetricDi stanceH nt 3
#defi ne SMetri cSpeedHi nt 4
#define SMetricDi stancelLabel 5
#define SMetri cSpeedLabel 6

#defi ne SUsDi st anceHi nt 7
#def i ne SUsSpeedHi nt 8
#defi ne SUsDi st ancelLabel 9

1

#def i ne SUsSpeedLabel 0
#define SlnvalidDi stance 11
#define Sl nval i dSpeed 12
#def i ne SCal cul at eMsg0 13
#defi ne SCal cul at eMsgl 14
#def i ne SCal cul at eMsgN 15

The resource script file is shown below.

Multilizer Localization Guide 97

C++Builder

Delphi

C++Builder

#i ncl ude "dcal cres. h"

STRI NGTABLE
BEG N

SAbout Msg "Dcalc is a multilingual application that cal cul ates the
average driving time";

SLanguage "English";

SDef ault "Defaul t";

SMetricDi stanceHi nt "G ve the driving distance in kilonmetres";

SMetricSpeedH nt "G ve the average driving speed in kilonetres per
hour";

SMetri cDi st anceLabel "in kilonetres";

SMet ri cSpeedLabel "kni h";

SUsDi stanceHi nt "G ve the driving distance in mles";

SUsSpeedHi nt "G ve the average driving speed in mles per hour";
SUsDi st anceLabel "in mles";

SUsSpeedLabel "nmph";

Sl nval i dDi stance "\"%\" is not a valid distance!";
Sl nval i dSpeed "\"%\" is not a valid speed!";
SCal cul at eMsg0 "The average driving tinme is % mnutes.";
SCal cul ateMsgl "The average driving tine is one hour and % mnutes.";
SCal cul at eMsgN "The average driving tinme is %9:d hours and %.:d
m nutes.";
END

The second code section in the beginning section of the IniForm function formats the
speed and time in locale independent ways. The For mat and Dat eTi neToSt r functions
convert the value to a string value using the formatting rules of the current locale.

The next code section sets the caption of the current locale label to match the current
locale. The name is given in the native language of the locale.

The next code section sets the caption of the current language label to match the current
language. The SLanguage resource string contains the name of the language in its native
language (e.g., English, Deutch, suomi, svenska, etc).

The last code section sets the initial values, labels, and screentips for distance and
speed. The metric system uses kilometers and km/h. The US system uses miles and
mph. Unit IvI18N contains the GetMeasurementSystem function that returns the
measurement system of the current locale.

To do the first initialization, we call the initialization function from the OnCreate event.

procedure TMai nFor m For nCr eat e(Sender: TOhj ect);
begin

I nitForm
end;

void _ fastcall TMai nForm : FornCreate(TCbject *Sender)
InitForm();

The CalculateButtonClick event needs a little bit more rewriting. Let’s study the code that
generates the driving distance message:

Multilizer Localization Guide 98

Delphi

C++Builder

Delphi

C++Builder

'The average driving tine is ' + IntToStr(hours) + ' hours and ' +
IntToStr(mnutes) + ' minutes.',

"The average driving tine is " + |IntToStr(hours) + " hours and " +
IntToStr(mnutes) + " mnutes.",

This seems to be just ok, but it will actually make the localization hard or even impossible.
The reason is that the above logic assumes that the message always starts with the “The
average driving time is “ string, and then contains the hours, hour label, minutes, and the

minute label. However, not all languages use the same order of words in a sentence. For
example, the order might be: minute label, minutes, hour label, hours, and the text string.

Reordering of the parts of the message is impossible if we use the code shown above.

Fortunately, we can use VCL's Format function. It uses message pattern that contains
placeholders for the dynamic parameters. At run-time, the function combines the pattern
with the parameters to compose the message. Because the pattern is a single string, it
can be added to the resource strings, and it can then be translated as a single item. The
above code after the internationalization is:

For mat (SCal cul at eMsg, [hours, mnutes]),
For mat (LoadSt r (SCal cul at eMsg), OPENARRAY(TVar Rec, (hours, ninutes))),
SCalculateMsg is the pattern, and the hours and minutes are parameters.

The next step is to internationalize the calculate event. The following line of code contains
the Calculate event:

Multilizer Localization Guide 99

Delphi procedure TMai nForm Cal cul at eBut t onCl i ck(Sender: TObj ect);
resourcestring
Slnval i dDi stance = '"%" is not a valid distance!';
SInval i dSpeed = '"%" is not a valid speed!"';
SCal cul ateMsg0 = ' The average driving tinme is % nminutes.';
SCal cul ateMsgl = ' The average driving time is one hour and %
m nutes.';
SCal cul at eMsgN = ' The average driving tine is %9:d hours and %.:d
m nutes.';
var
str: String;
di stance, speed, hours, nminutes: I|nteger;
begin

di stance := StrTol ntDef (Di stanceEdit. Text, -1);
if distance < 0 then
begin
MessageDl g(
Format (Sl nval i dDi st ance, [DistanceEdit. Text]),
m Error,
[mbOK],
0);
Di st anceEdi t. Set Focus;
Exit;
end;

speed : = StrTol nt Def (SpeedEdi t. Text, -1);
if speed <= 0 then
begin
MessageDl g(
For mat (Sl nval i dSpeed, [SpeedEdit. Text]),
m Error,
[MK,
0);
SpeedEdi t . Set Focus;
Exit;
end;

i f Get Measurenent System = i vnsUS t hen

begin
di stance := Trunc(M LE_I N_METERS*di st ance/ 1000) ;
speed : = Trunc(M LE_I N_METERS* speed/ 1000) ;

end;
hours : = distance div speed;
m nutes : = Round(60*(di stance nod speed)/speed);

case hours of

0: str := Format(SCal cul ateMsgO, [m nutes]);

1. str := Fornmat(SCal cul ateMsgl, [mi nutes]);
el se

str := Format (SCal cul ateMsgN, [hours, mnutes]);
end;

MessageDl g(str, mtinformation, [nbOK], 0);
end;

C++Builder void __fastcall TMai nForm : Cal cul at eButtond i ck(TCObj ect *Sender)

int distance = StrTolnt(Di stanceEdit->Text);
if (distance < 0)

MessageDl g(
For mat (
LoadStr (Sl nval i dDi stance),
OPENARRAY(TVar Rec, (Di stanceEdit->Text))),
nt Error,
TMsgDl gButtons() << mbCK,
0);

Multilizer Localization Guide 100

Di st anceEdi t - >Set Focus() ;
return;

}

int speed = StrTol nt(SpeedEdit->Text);
if (speed <= 0)

MessageDl g(
For mat (
LoadSt r (Sl nval i dSpeed) ,
OPENARRAY(TVar Rec, (SpeedEdit->Text))),
m Error,
TMsgDl gButtons() << nbCK,
0);
SpeedEdi t - >Set Focus() ;
return;

}

i f (GetMeasurenent System() == i vnsUS)

{
di stance = M LE_I N_METERS*di st ance/ 1000;

speed = M LE_I N_METERS* speed/ 1000;
}

int hours = distance/ speed;
int mnutes = float(60)*(di stance%peed)/ speed,;

Ansi String str;

switch (hours)

{

case O:
str = Format (LoadStr (SCal cul at eMsg0), OPENARRAY(TVar Rec,
(mnutes)));
br eak;

case 1:

str = Format (LoadStr (SCal cul ateMsgl), OPENARRAY(TVar Rec,
(mnutes)));
br eak;

defaul t:
str = Format (LoadStr (SCal cul at eMsgN), OPENARRAY(TVar Rec, (hours,
mnutes)));

MessageDl g(str, ntlnformation, TMsgDl gButtons() << nbOK, 0);

The hard coded error message has been replaced with the Format message.

If the selected locale uses miles instead of kilometers, we have to treat the value in the
edit box as miles. Then we also have to convert distance from miles to kilometers before
calculating the driving time. It is always a good idea to internally use the metric system
and convert the input and output to the US system when application is run on a US
locale, because that makes the calculations easier.

After we have calculated the average driving speed, we have to show it to the user. As
described previously, we are going to use the Format function and message patterns.
However, we want to make the message grammatically correct. That's why we need
three message patterns. The first one is for the case when the time is less than an hour,
another for the case when the time is between one and two hours, and last for the case
when the time is two hours or more. This is because in most languages the single and
plural forms are handled in different ways. For example, “one hour” vs. “two hours.”

Multilizer Localization Guide 101

The following figure contains the message when the time is less than one hour. Note that
there is no hour string present.

Information PS—<|

i] The average driving time is 14 minutes,

Figure 87: Message displayed when time is less than 1 hour.

The following figure contains the message when the time is more than one hour but less
than two hours. Note that the value for hour is not given as a number but written in letters.

Information [‘5—<|

i] The average driving time is one hour and 33 minutes,

Figure 88: Message displayed when time is 1 hour.

The following figure contains the message when the time is more than two hours. Both
hours and minutes are shown as numbers and in plural form.

Information f'5_<|

i] The average driving time is 2 hours and & minutes,

Figure 89: Message displayed when time is more than 1 hour.
Even this solution is not perfect because:

* There might be a language that has a specific word for two hours. The above
logic assumes that only 0, 1, and 2 or more are handled each in different ways.

e We should use the same logic for minutes as well, but this would require 3 by 3
equals 9 message patterns.

The final task left is to resource the message used in the about box:

Multilizer Localization Guide 102

Delphi procedure TMai nFor m About MenuCl i ck(Sender: TObj ect);
resourcestring
SAbout Msg = 'Dcalc is a nultilingual application that calcul ates the
average driving tinme';
begin
MessageDl g(SAbout Msg, nt Custom [nmbOK], 0);
end;

C++Builder void _ fastcall TMai nForm : About Menud i ck(TCbj ect *Sender)

MessageDl g(
LoadSt r (SAbout Msg) ,
mt Cust om
TMsgDl gButtons() << nbCK,
0);
}

Because we set many property values dynamically at run-time, the original design time
values in the form files become obsolete. They cause no harm, but it makes the
translator’s job easier if we remove them. We could set those values to empty, but this
would make it harder to edit the form files because the labels would no longer be visible.
A good solution is to set all dynamic visible property values to “dummy.”

Z Driving Time Calculator E][E|E|

File Help

Driving distance] s

durnry : Calculate

Awerage driving speed] - - - ... =

Speedingfine:. edummy e
Dateandfime: - dummy
Burrentlogale: - - dummy
User interface language: . | | L dummy &L Ll

Figure 90: The internationalized Dcalc form on Delphi IDE.

Now the Dcalc application has been internationalized. Compile and run it to see that it
works before moving on.

Multilizer Localization Guide 103

Delphi

C++Builder

«1 Driving Time Calculator

File Help

Drriving diztance

| it kilometres Calculate

Average driving speed

100 km/h
Speeding fine: 500,00 £
Date and time: 21122002 19:49.27
Current locale: Finnizh
Ilzer interface language: Englizh

Figure 91: The internationalized Dcalc application running with Finnish locale.

This simple internationalization demonstrates three of the most important issues to take
into consideration in internationalization: resourcing, dynamic messages, and unit
conversions. There are quite many other things that you need to know about
internationalization as well. Refer to Delphi’s online help and/or an 118N book to get more
information about internationalization.

Run-time language switch

The final task is to implement run-time language switch. This can be done if the resource
DLLs are used. Add Language... menu to the File menu and write the following code:

procedur e TMai nFor m LanguageMenud i ck(Sender: TQnj ect);
begin
i f Sel ect ResourcelLocal e then
begin
InitForm
Set Curr ent Def aul t Local eReg;
end;
end;

void _ fastcall TMai nForm :LanguageMenud i ck(TChj ect *Sender)
i f (Sel ect ResourcelLocal e())

InitForm();
Set Current Def aul t Local eReg() ;

}
}

The SelectResourcelLocale function shows a dialog box that shows the available
resource language and loads the selected resource DLL. This will remove all run-time
modifications of the forms. That's why we have to call the InitForm function again. Finally,
we save the selected language to the system registry.

When starting the application, VCL is going to select the resource DLL matching to the
current locale settings of the user. We want better control over the initial language. The
first choice would be a command line parameter (e.g., dcal c. exe en_US). If that is not
present, then we would like to use the previous language stored in the system registry
under the HKEY_CURRENT_USER\Software\Borland\Locales key. This registry key is
the built-in feature of VCL. Only if that does not exist, we would like to use the default
language. Add the following code in the initialization part of the main form:

Multilizer Localization Guide 104

Delphi

C++Builder

NOTEI

var
| ocal e: | nteger;
initialization
i f Get CommandLi neLocal e(l ocal e) then
Set NewResour ceDl | (1 ocal €);
end;

W NAPI W nMai n(H NSTANCE, HI NSTANCE, LPSTR, int)

{
try

int |ocale;
i f (Get CommandLi neLocal e(l ocal e))
Set NewResour ceDl | (1 ocal €);

Application->lnitialize();
Appl i cati on->Creat eForn{__cl assi d(TMai nForm), &Vai nForm ;
Appl i cation->Run();

catch (Exception &exception)
Appl i cati on- >ShowExcepti on(&excepti on);

return O;

}

Enable DRC generation in Delphi

We will perform one more task to make the localization easier. When using the
resourcestring clause, Delphi puts the strings to the string resources automatically.
However, it does not let you choose what string ids will be used. In addition, Delphi will
most likely change those ids next time you compile your application. What remains
constant are the resource string names (e.g., Sl nval i dDi st ance). Unfortunately, the
compiled binary file (.exe or .dll) does not contain the resource string name but only the
string ids. Fortunately, it is possible to make Delphi create a resource string file that
contains all the resource string’s name and ids used by the application. To create such a
file, open a Delphi project, choose Project | Options, select the Linker tab, and check
Detailed in the Map file radio group. Rebuild the application by choosing Project | Build
DCalc. Delphi generates the resource string file called dcal c. drc.

Create Multilizer Project

In order to localize Windows software developed with Delphi/C++Builder, you have to
create a Multilizer project. This is described in the first part of the manual, in the chapter

Create Project] p.
Delphi-specific settings

For Delphi localization projects, Project Wizard will display one extra page with target-
specific information. At a minimum, the user should specify here the location of the
Delphi-project and DRC-file, if available. This and other Delphi-specific settings are
discussed in the next chapter.

Multilizer Localization Guide 105

NOTE!

Project Wazand - WL Binary El
el ther WEL by fibe apliona.
Languag of e splcalon
|Engiz =
[Propsct e rewmar

|I:l'-BII-.'ui'.'-'I B Dol ™S g Hinaiy Diealedieaie. der J
RRC Tl e J

[S 1 5 hmdpha™ 5 v ey Dk oal, che

[Dusipead s

[Locaksed R

I Fisscurce flss

[T ol s

Optors

FF Scan maga: ko the loam deta
F Chack grsied property

R Gk Bilibaods property

™ ‘wirile pade sTings

e | B [b] Cocet |

Figure 92: Delphi-specific settings for VCL binary target.

Integrated Translation Environment

If you have previously used Borland Integrated Translation Environment (ITE) to localize
your application, the following message box will appear in Project Wizard:

% D 'wo Wk b Inport Exdeting Lsngusges snd renslstions?

i

Lves J[w0 |[ree |

Figure 93: Message box telling that there are existing ITE translations.

Press Yes to import the initial languages and translations from ITE-generated resource
DLLs. From now on you do not have to use ITE anymore. You can delete ITE directories,
projects files, and project groups.

Specify Localization options

After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful — and follow Delphi/C++Builder suggested
way of localization — but in this tutorial, we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

All Delphi-specific options are gathered under the Delphi Target dialog. If there are many
targets in one project, you can set different localization options to all, if needed.

Multilizer Localization Guide 106

WARNINE!

Project

Delphi Target x|

— Eile

D 5Bl Al 1. 895D elphid S ampleshBinarnytDzalc doale, ex

— Optionz
Project | Enu:u:udingsl Elutputl Fonts I IME I Fezources

FPraject file name:

ID:"'.EIN"-.mIEJ B94DelphirtS amplestBinanh\Dcalc deale. dpr
DRC file name:

ID:"'.EIN"-.mIEJ B94DelphirtS amplestBinanhDealc deale. dic

Options
[+ Scanimages from the form data
[+ Check zcaled property
[+ SetBiDiMode property
['wite wide strings

k. Cancel Drefauilt Help

Figure 94: Delphi target options.
Project file name

Project file refers to the Delphi project from which the executable was compiled. If the
project file is specified, Multilizer is able to automatically resolve visual inheritance of the
software. This enables visual inheritance in the Multilizer project, which minimizes
translation work and maximizes translations consistency.

DRC file name

DRC-file is needed to resolve Delphi resource string names. If DRC-file is specified,
Multilizer will assign resourcestring constant names to the localization context. In
addition, the context will include the name of the unit, where resourcestring is defined.

If DRC-file is not specified, Multilizer uses resource id (integer) as the context. Because
Delphi-compiler changes these ids on re-compilation of the software, localization context
changes, which can result in loss of translations.

DRC-file is created by Delphi compiler (= [Enable DRC generation in Delphi} p. [L04).

Options

Scan images from the form data enables Multilizer to scan images (glyphs) from form
resource data. Most VCL components with images store the bitmaps in form data, and
checking this option enables localization of them.

Multilizer Localization Guide 107

Check scaled property enables Multilizer to ensure that scaled property of forms is set to
false. This prevents VCL from scaling the form during run-time, which occurs if a different
script is applied than on design-time.

Set BiDi Mode Property enables Multilizer to set the BiDi Mode Property for RTL (Right-
to-Left) languages.

Write Wide strings enables Multilizer to write strings using Unicode encoding. If this
option is unchecked, strings are written using the encoding as in the original form.

Encodings

Encodings tab lets you specify codepages for target languages. In addition, you can force
Multilizer to read the localization target with certain language and codepage settings.

Normally default values should be used; they are based on the information that Multilizer
detects from the Windows software.

x
— File
D:AEIMAml5S 1. 895D elphi?S amplesh\BinanytDoalchdoale. exe J
— Optionz
Project Encodings | Output I Fonts I IME I Fezources I
M ative language: M ative encoding:

Englizh j IWindDws Western Europe [1252] j
Language | Encoding |
Englizh Windows YWestern Europe [1252]
Firnizh YWindows YWestern Europe [1252]

k. Cancel Drefauilt Help

Figure 95: Encodings for target languages.

Output

The far most important option in localization is to specify location and type of localized
files.

Multilizer Localization Guide 108

TIfl

Delphi Target x|

— File
ID:'&BIN Wl5. 1. 89D elphi™S ampleshBinansDzalchdoalc. exe J

— Optionz
F'ru:uieu:tl Encodings Output | Fonts I IME I Fezources

Oukput dir;
ID:'\EIN'\mIEJ 89.DelphisS amplestBinansDcalc

[~ Dutput files ~= Resource file options
¥ Localized files ¥ Copy all resources
[+ Besource files [+ ‘wirite to oot directary
[Multilingual file
— Localized file name
Tupe: ISuI:. directany j Lacale separator: I__
LCoding: IMuItiIizer j Country separatar; I__

Finnizh [Finland] zample:
Application.exe -> fi FItApplication. exe

] 4 Cancel Default Help

Figure 96: Output options for localized Delphi software.

The following figure shows the files that Multilizer uses in the binary localization process
of a VCL application:

Application file Project file Localized application files

sample.exe @ sample.mpr @ sample.EN en/sample.exe all/sample.exe

—> —> | sample.DE de/sample.exe
sample.FR fr/sample.exe

Figure 97: The files of the binary localization process of a VCL application

When deploying the application, you can either deploy the original application file with the
selected resource file(s), the localized application file(s), or the multilingual application
file.

By default, Multilizer creates resource files. This is the way of localizing
Delphi/C++Builder recommended by Borland.

If you choose Resource files, you can enable run-time language switching in the software
(= |nternationalization] p. P3).

Fonts

On Fonts tab, the user can specify the font of the localized software. Furthermore, rules
can be set to apply fonts on certain conditions.

Default settings are recommended, because they are strictly based on Windows
standards.

Multilizer Localization Guide

109

Delphi Target x|

— File
ID:'&BIN Wl5. 1. 89D elphi™S ampleshBinansDzalchdoalc. exe J

— Optionz
F'ru:uieu:tl Enu:u:u:lingsl Output Fonts IIME I Rezources

Localize fonts:

Wihen the native Latin font iz “Anal’’ and zize iz 10

Fonts to be uzed:

Script | Fant nane | Size =~ Edit... |

Arabic Anial 10
Armienian 10
Chineze, simplified Tahoma 1 =
Chineze, traditional — Terminal 10
Cyrillic Arial 10
Devanagar 10
Dhives akur 10

Georgian m -
1 | »

] 4 Cancel | Default | Help

Figure 98: Font options for localized software.

IME

IME (Input Method Editor) settings specify the input method editor (IME) to use for
converting keyboard input to Asian language characters.

Multilizer Localization Guide 110

Delphi Target x|

— File
ID:'&BIN Wl5. 1. 89D elphi™S ampleshBinansDzalchdoalc. exe J

— Optionz
F'ru:uieu:tl Enu:u:u:lingsl Dutputl Forts IME |F|esu:uuru:es

Default Simplified Chingse input method:

Default Traditional Chinese input method:
I Chinese

Default Japaneze input method:

L

L

I Hiragana

Default E.orean input method:

L

I Hangul, full

] 4 Cancel Default Help

Figure 99: IME options for software localized to Far Eastern languages.

The IME settings here will apply corresponding value to IMEMode property in the
software localized to Chinese, Japanese, and Korean.

Resources

On Resources tab, you can specify what kind of resources you want to localize. Multilizer
detects the resources of the executable, and lets the user choose what to localize.

Multilizer Localization Guide 111

Delphi Target x|

— File
ID:'&BIN Wl5. 1. 89D elphi™S ampleshBinansDzalchdoalc. exe J

— Optionz
F'ru:uieu:tl Enu:u:u:lingsl Dutputl Fonts I IME Resources

[w]:Bitmap resource [RT_BITMAP
Curgor resource [RT_CURSOR]

Dialag rezaurce (RT_DIALOG]

Form rezource [RT_RCDATA)

Group curzor resource [RT_GROUP_CURSOR)
Group icon rezournce [RT_GROUP_ICOM]

lcon resource [RT_ICOM)

Shing resource [BT_STRING]

] 4 Cancel Default Help

Figure 100: Specifying the resources to be localized.

In Delphi and C++Builder projects, forms are stored in form resource. Therefore, at least
Form resource and String resource should be checked, in order to localize the texts of the
software.

VCL components store a lot of non-localizable data in strings (string properties). Multilizer
excludes a lot of this kind of strings automatically by applying rules based on component
names and properties. These settings are configurable (2 Excluding Properties from _|
|ocalization| p. L13).

Translate Project

For testing purposes, you can translate the software by using pseudo languages (C.f.
Pseudo language| p. ; right-click language column, choose properties, and select the
pseudo language options. This will fill the translation grid with pseudo language
translations.

Wysiwyg

Besides just translating, Multilizer allows editing of Ul (user interface) elements. This is
useful in cases, where original software was not designed for localization, and translated
strings don't fit in the placeholders.

Translation with Multilizer showing visually the changes in Ul is referred to as Wysiwyg in
this manual. Wysiwyg is enabled both in forms editing as well as menu editing, as shown
in the following images:

Multilizer Localization Guide 112

D A& ¥ & BBE| k[=] »
=1 dena (Divieg Tave Cobeutotr M= 5|
=] Cumsids
& [Bimags Pl
= [| L] . -
= = Diadonga h = Lfﬂ.ﬂ
= DLGTEMPLATE |
=} i Sl P F‘l
ke Era
il [l
nke i =ipt e S paacing fna- ey
k= Comils
o s [isbe: sref e g
b AT ane Cunent kooake: =T
wh Syxlonst Ui infestace Language: iy
= 4_4 Feira
B ThSakkiFessucd l
w I e Contest [hiative [Finmish
| | CakulateBution Hint Caloulates e avarage domn
[¥| CabculateBitton Caghon | Calculats [[aske |
HnesiEmin Casbnn Apwrans dmann §nes

Figure 101: Localizing Delphi forms visually in Multilizer.

Bis [de Jearch Wem Project [ook Help
DEFR A& Lhre O BFE F|fu = »

E P deske ma Fia Help
= 1 Cistids
] B#maps Chel sak: anguage
] lisws
=} = Didage E:xal
= DLGTEM®SLATE
= Shegn
i mgn
sbx Faivlr
B WinH el e
sk Conniz
wbe bk
sbr RTLC o=t
whe Epelonsd
=14 Foitve
B ThEskevPesouoli
H B TanFom
B HanH e

Corlas | mintwn Finmish
|| Maintderaui Fle1._Caption Fibe
|t taintierud . Filel Larguaged| Language Eiiei

Bl eiatde e d Fded Fiadeibl ae e Miade.. L -

Figure 102: Localizing menus visually.

More info

Refer to the following parts of the manual for more information on translating software,
and sharing translation work between team members:|

MORE INFD

« Pre-translate project| p. R5|

« Prepare project for translation] p. p6]

Multilizer Localization Guide 113

« Bhare translation work] p.
. p.

Build Localized Versions

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files based on the target options (= p. [LO7).

Finally, you can run the localized application by right-clicking the column header (e.qg.,
Finnish) and by choosing Run.

«1 Ajoaikalaskin E@@

Tiedosto Asetukset Chie

Ajarnathka

| kilometreizza Laske

k.eskimaarainen ajonopeus

100 km/h
Ylinopeuszakko: 500,00 £
Paivimaara ja aika: 22122002 11:38:37
Yoimazzaoleva paikanne: guomi [Suami]
k- ayttalittyprnarn kiel: FUOMI

Figure 103: Running localized software.

Excluding Properties from localization

Not all string properties are intended for localization. Localization of them can even result
in a crash of the software. In order to prevent this from happening, Multilizer excludes by
default some of the string properties.

In order to exclude strings from localization, you can:

e Specify what string-type properties are excluded for a VCL component

« Specify what properties are always excluded

These settings will prevent Multilizer from adding them in the localization project.

The settings discussed here affect the way that Multilizer scans form resource data.

Exclude properties by components

To exclude properties by components, choose Tools->Options..., select Delphi and
C++Builder, Components.

Multilizer Localization Guide

{ | Ervem proveed
] MET
) Dimipta e o+ Duakcien

E schucded rogarta:
Franin

b1 liwa

|| bl 5§

k) Pain

| Vil Bac:
e] ke

114
botem =l
Tiwe | Camm | o am |
Tt Anin Cinbsyay
E it i fusian i H I
Esctordfaniieredlm ACHGn resn e b
T dectmmrdfarusgm S0 e
Tisctioe ol Ation ool b _:I
T 000 pyenared AN cowrdraed
TRDIO g A DoreeDRn Coreaomonl i), Prosiles Expoa_ I
EaDOsghed A0 dalagst
T sy AD pEny ot
[T EARTY STE Al dessd prcadios 4'
b ALV takde Fitm ireed micH ey Hamm .

[aT Pt Frkd
T g gl whi Fuekd

dywraas drdve
T A i B Al |
TlapalaE [=l shsemare, = e Flans
Figumd ekl
£ s vl coargorery Erchy s Mo Encldshm
T e phracF wed Frakd

Bwiods Dol et oo
PRyt Charl oargoses L b S oo, SN e Pl
TR hbioee Amchibdaes
FICLT i Fesbed
T B (ks ol B O] s
I Huresd
T ek Fukd
TEaEan Fihigs [nillpe =]

[oc] cwew | o | oo |

Figure 104: Excluding properties by components in VCL binary localization.

This dialog lets you specify the excluded properties of specific components. You can
specify one or more properties that are excluded from scanning for each component.

This dialog is also used to configure the visual representation of each component

(=>Visual Representation| p. [L15).

Exclude properties by name

To exclude properties by name, choose Tools->Options..., select Delphi and
C++Builder, Excluded properties.

| Fropary: |

=
|| Ervem peoves)
=l MET it g g 4'
0 e] 42 Pl i
. C ongaraniz "-:«T_'-Il'- L I
E— * 5 I
o Pt
L Jawa I Espad_
] Habds'F Orign 4'
i) Pal o
| Vil Bac:
e | Yerke

[oc] cwes | 0 | oewe |

Figure 105: Excluding properties by name in VCL binary localization.

This dialog lets you specify the properties that are not localized.

Multilizer Localization Guide

115

Visual Representation

Delphi and C++Builder are component-based RAD (Rapid Application Development)
programming environments, where user interfaces are designed with components.

There are tens of standard components, and more than a thousand of third-party

components. In order to display any component correctly, Multilizer allows users to

configure the visual representation of any VCL component.

All standard VCL components and most common 3rd-party components are defined

already.

Components whose visual representation is not defined are shown with yellow
placeholders in Wysiwyg.

Driving Time Calculator

File Help

—Diriving distance
durnmy

M [u] 3

TButton

—fverage diving speed
durnrny

Speeding fine:
[rate and time:
Current locale:;

|Jzer interface language:

durnmy
durnirny
durnirny

durnirny

Figure 106: Visual form editor with an unknown VCL component.

To exclude properties by components, choose Tools->Options..., select Delphi and
C++Builder, Components. Choose Add.. to add new component.

x|

hddcompement
[P E rachoakis poapaini pirk:
[TButicn
liraph
|, - |
Butinn

Figure 107: Specifying visual representation for VCL control.

Write the component name as specified in Delphi/C++Builder. Choose from Graph the
appropriate representation; a preview is shown automatically.

Multilizer Localization Guide 116

After the next re-scan of project selected, visual representation is applied in Wysiwyg, as
shown in the next picture.

Driving Time Calculator O] =
File Help

—Diriving diztance

I durnrmy Laske |

—Awerage driving speed

durnrmy
Speeding fine; durnmy
[rate and time: durnmy
Current lozale: duirnry
Ilzer interface language: duirmry

Figure 108: Visual Editor recognizing all VCL controls.

@ Visual Representation configurations can be shared between team members; you can
both import and export the settings as Multilizer item files.
TIPI

Multilizer Localization Guide 117

.NET Tutorial

This tutorial describes localization of .NET software.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET

Sample(s): <mldir>/NET/Dcalc/cs/
<mldir>/NET/Dcalc/vb/

Tutorial(s): <mldir>/NET/Tutorial/cs/
<mldir>/NET/Tutorial/vb/

* To learn the basics of localization of .NET software and localization prerequisites, go
through the entire tutorial. It requires that you have Visual Studio .NET installed on
your computer.

- [ntroduction| p. 117]

e To learn how to use Multilizer for .NET software localization, you can localize any of
the sample application.
> Ereate Multilizer Project] p.

Introduction

.NET software includes localizable data in resource files (ResX, TXT). Multilizer localizes
these resources.

In order to simplify localization, Multilizer supports localization of

* Visual Studio .NET Solutions,

e Visual Studio .NET projects,

e C#Builder and Delphi 8 Project Groups

e C#Builder and Delphi 8 Projects

Localizing any of abovementioned Solutions, Projects, or Project Groups makes Multilizer
pick all localizable resources automatically; without support for this, user would need to

do this manually.

This tutorial is written for Visual Studio .NET; both C# and Visual Basic code samples are
included.

Multilizer Localization Guide 118

Localization of Visual Studio .NET software

Multilizer localizes Visual Studio Solutions, Visual Studio Projects, and .NET resources.

VS .NET Solution
I{’ * SLN
Localize
VS Solutions
v v : v v
Smart Device Smart Device
C# Project VB .NET Project Visual J# Project Application; Application;
E. *.csproj *.vbproj *.Vjsproj C# Project VB. NET Project
Localize *.csdproj *.vbdproj
VS.NET
Projects
ResX ResX ResX ResX ResX
Resources Resources Resources Resources Resources
"
Localize
NET TXT TXT TXT TXT TXT
Resources
Resources Resources Resources Resources Resources

Figure 109: Visual Studio .NET file hierarchy.

Localization of Visual Studio .NET solutions

Visual Studio .NET introduced the concept of Software Solution: each solution contains
any number of Visual Studio .NET projects. While .NET projects are programming
language dependent, solutions are not.

Multilizer supports the localization of a .NET solution. It detects all projects in the solution,
and from each project it detects the localizable resoures.

By localizing a solution with Multilizer, user doesn’t need to pick localizable resources
manually, but Multilizer finds them automatically and adds them in Multilizer project. All
translation and other localization work is done conveniently in Multilizer.

When creating localized versions, Multilizer again takes care of creating all localized files
required in the .NET Solution.

Localization of Visual Studio .NET projects
Visual Studio .NET projects contain the resource data in the resource files (e.g. . r esx or

. t xt). Multilizer creates the localized resource files from the original files. The following
picture describes the localization process.

Multilizer Localization Guide 119

Translated
Project file Project file
; ; English resource
'\:,/;(S);j:::ltsﬁtlgdlo NET H H H or gatelite files
@ [| @ [o @ Germanresource
or satelite files
French resource
Multilizer Multilizer Builder or or satelite files
application application Multilizer

Programmer Translators Programmer

Figure 110: Visual Studio .NET project file localization process.

The programmer uses Multilizer to extract strings from the original resource file(s)
belonging to the project (1). Multilizer saves these strings to the project file. The
programmer sends the project file to the translator(s) that use Multilizer to translate the
project file (2). The programmer uses Multilizer or Builder to create the localized resource
files and/or the localized satellite assembly files (3). As a result there will be one resource
file or one satellite assembly file for each localized language.

Multilizer creates subdirectories under original project file folder containing the localized
satellite assembly files. I.e. there might be subfolders called

..\en\ MySanpl e. resour ces. dl | (English) and

..\ fi\MySanpl e. resources. dl | (Finnish).

When deploying the application you can either deploys the original application file with
the localized satellite assembly (e.g. de\ MySanpl e. resour ces. dl |), or you can link
the localized resource file (e.g. MySanpl e. de. r esour ces) to the original application
file.

The following example figure shows the files that Multilizer uses on the Visual Studio
.NET project file localization process.

VS.NET Project file Project file ML creates localized files ML compiles the localized files ML creates the satelite files

sample.csproj @® sample.mpr @ sample.en.resx ® sample.en.resources @ en\sample.resources.dll
—> —> | sample.de.resx | —> | sample.de.resources | —> | de\sample.resources.dll
sample.fr.resx sample.fr.resources frsample.resources.dll

Figure 111: The files of the Visual Studio .NET project file localization process.

Using this localization process Multilizer globalizes the resources of any .NET application.

Localization of Delphi 8 / C#Builder software

Multilizer localizes .NET projects and project groups of Borland® Delphi 8 and C#Builder.
Thus instead of working with individual ResX resources, you work with the same project
and project group concept as in Borland .NET development tools.

Multilizer Localization Guide 120

C#Builder Delphi 8
m Project Group Project Group
|I’ * *
.bdsgroup .bdsgroup
Localize
.NET Project
Groups
A y
C#Builder Project Delphi 8 Project
|: *.bdsproj *.bdsproj
Localize)
Delphi8/
C#Builder
Projects
N ResX N ResX
Resources Resources
m
Localize
.NET
Resources Ly TXT Ly TXT
Resources Resources

Figure 112: Borland Delphi 8/C#Builder file hierarchy.
Localization of Delphi 8 / C#Builder project groups
Multilizer supports the localization of Delphi 8 / C#Builder project groups.

Multilizer detects all projects in the project group, and from each project it detects the
localizable resources.

By localizing a project group with Multilizer, user doesn’t need to pick localizable
resources manually, but Multilizer finds them automatically and adds them in Multilizer
project. All translation and other localization work is done conveniently in Multilizer.

When creating localized versions, Multilizer again takes care of creating all localized files
required in the project group.

Localization of Delphi 8 and C#Builder projects

Delphi 8 and C#Builder projects contain the resource data in the resource files (e.g.
. resx or.txt). Multilizer creates the localized resource files from the original files.

Using this localization process Multilizer globalizes the resources of any Delphi 8 or
C#Builder application.

Localization of .NET resources

If you do not use Visual Studio .NET, C#Builder or Delphi 8 but the command line tools of
the .NET SDK or some other .NET development tool, you have to use the resource file
localization process.

The following picture describes the localization process of .NET resources.

Multilizer Localization Guide 121

Translated
Project file Project file
resource files
[| 1 K German
@ @ @ resource files
French
Multilizer Multilizer Builder or resourcefiles
application application Multilizer

|l 7

Programmer Translators Programmer

Figure 113: .NET resource file localization process.

Programmer uses Multilizer to extract localizable data from the original resource file(s)
(2). Multilizer saves them to the project file. The programmer sends the project file to the
translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource files (3). As a result there will be one
resource file for each localized language.

When deploying the application you can either link the localized resource file (e.qg.
My Sanpl e. de. r esour ces) to the original application file or create a satellite assembly
file containing the localized resource file(s).

The following example figure shows the files that Multilizer uses on the .NET resource file
localization process.

Resource file Project file ML creates localized files ML compiles the localized files

sample.resx @ Sample,mpr @ sample.en.resx @ sample.en.resources

or —> —> | sample.de.resx | —> | sample.de.resources
sample.txt sample.fr.resx sample.fr.resources

Figure 114: The files of the .NET resource file localization process.

Using this localization process Multilizer globalizes all localizable data from the .NET
resource files (. r esx) and strings found from the text resource files (.txt).

Open Tutorial Application

We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize.

<m di r >\ NET\ Tut ori al \ cs\ Dcal c. csproj (C#) and

<m di r >\ NET\ Tut ori al \ vb\ Dcal c. vbpr oj (Visual Basic)

contain the project file of the Dcalc sample application. Compile and run the application.
By default, Dcalc uses English language.

The application should look like this:

Multilizer Localization Guide 122

= Driving Time Calculator, E@@

File Help

Drriving diztance

BN in kilometres Calculate |

Average driving speed

100 kmsh
Speeding fine: £500
Drate and time: 22122002 10:59.44
Current locale: Drefault
Ilzer interface language: Englizh

Figure 115: Dcalc application using an English user interface.

This version of Dcalc is not internationalized and many of the locale-dependent features
are hard-coded. For example the currency symbol is always pounds, distances are given
in kilometers and speed in kilometers per hours.

Internationalization

Microsoft .NET localization model is based on localizing resources. This means that
before localizing the software, all culture (locale) dependent data must be separated from
the code and put in resource files. This is called internationalization. Internationalization
tasks are discussed more in detail in chapter Overview.

Internationalization of forms

Internationalization of forms is easy, because .NET generates automatically the source
code for them. To internationalize a form, you just need to set the Localizable property of
the form to true. .NET will automatically create a resource file (. r esx) for the forms
elements and create the code that references to it.

Properties

3
| MainForm Swstem.Windows, Forms. Form j

&

[4i][E] #

Language [Defaulk) - I
Localizable True -

Location 0; 0

Locked False

MazxirnizeBox True
MaximurnSize 0; 0 JI
Meru mainMenu

MinimizeBox True
MinirmurnSize 0; 0 ﬂl
Localizable

Cetermines if localizable code will be generated For this object,

Figure 116: To localize the form set the Localizable property to true.

Multilizer Localization Guide 123

C#

Visual Basic

Internationalization of code

If there are hard-coded strings in the user-written part of code, you have to do the
internationalization manually. You will need to create a resource file for strings, and call
the internationalized strings from your code.

The first step is to create a resource file for the string. Choose Project | Add New Item
from the Visual Studio .NET. From the Template list select Assembly Resource File.
Rename the file to Resour ce. r esx. Finally press the Open button to create the file.
Visual Studio .NET creates an empty resource file.

Let's add a string to the resource file. Double click Resour ce. r esx from the Solution
Explorer tree. This opens the resource table editor. Type “Language” to the first row of
the name column and “English” to the value column. This adds one row the file where
“Language” is the key and “English” is the translation.

Data for data

name value cormment Lyvpe mimekype

2 Languge frlly (il fnully
#*

Figure 117: Resource file after adding the first item.

During this internationalization process we are going to add several new items to the
resource file.

To access the resource file during run-time we have to add a Resource Manager object
to the application. Add the following lines to the MainForm class.

public class MainForm: System W ndows. For ns. Form

{

private ResourceManager rm

private void MinForm Load(object sender, System EventArgs e)

{
rm = new Resour ceManager (" Dcal c. Resource", this.GetType().Assenbly);

Public O ass mainform
Inherits System W ndows. For nms. Form

Dimrm As New Resources. Resour ceManager (" Dcal c. Resour ce",
Cet Type(mai nform . Assenbl y)

End. Cl ass
The rm object is used to get translation from the resource file.

Hard-coded strings
Open the Click event of the aboutMenu. It contains two hard coded strings. To remove
the hard coding we have to add the string to the resource file and replace the direct

access to the string by the access to the resource file.

Add both strings to the resource file and wrap them by the rm.GetString method.

Multilizer Localization Guide 124

C#

Visual Basic

C#

Visual Basic

C#

Visual Basic

private void about Menu_d i ck(object sender, System EventArgs e)
{
MessageBox. Show(

rmGetString("Dcalc is a multilingual application that cal cul ates the
average driving tinme"),

rm Get String("About Dcalc"),

MessageBoxBut t ons. K,

MessageBoxI con. I nf or mati on) ;

Private Sub About Menu_C ick(ByVal sender As System Object, ByVal e As
Syst em Event Args) Handl es About Menu. d i ck

MsgBox(rm Get String("Dcalc is a multilingual application that
calcul ates the average driving time"), vbOKOnly, rm Get String("About
Dcal c"))
End Sub

Format strings

If you look at the calculate event you will see that the following lines are used to format
the message string that show the driving time to the user.

MessageBox. Show(
"The avarage driving tine is " + Convert.ToString(hours) + " hours and
+
Convert. ToString(m nutes) + " mnutes.",
"Driving time",
MessageBoxBut t ons. K,
MessageBoxI con. I nf or mat i on) ;

MsgBox("The average driving tinme is " + Convert.ToString(hours) + " hours
and " + Convert.ToString(minutes) + " mnutes", vbOKOnly, "Driving tine")

The above code contains both hard coded string and bad design. First of all the message
is split into several string that do not contain a real sentence. That's why it is hard to
translate them. Also the code assumes that the word order is text plus hours plus some
other text plus minutes plus some other text. This works with English but may not work
with some other language. That's why we have to use the Format method of the String
class. It uses a message pattern and variables.

MessageBox. Show(
String. For mat (
rmGetString("The avarage driving time is {0} hours and {1}
m nutes."),
Convert. ToStri ng(hours),
Convert. ToString(m nutes)),
rmGetString("Driving tine"),
MessageBoxBut t ons. K,
MessageBoxI con. I nf or mati on) ;

MsgBox(String. Format (rm Get String("The average driving time is {0} hours
and {1} minutes"), hours, minutes), vbOKOnly, rm GetString("Driving
tinme"))

The calculate event shows a message if the distance value is invalid. It also contains
hard coded string and a dynamic message.

Multilizer Localization Guide 125

C#

Visual Basic

C#

Visual Basic

C#

Visual Basic

MessageBox. Show(
di stanceText. Text + " is not a valid distance!",
"Error",
MessageBoxBut t ons. K,
MessageBox!| con. Error);

MsgBox(di stanceText. Text + " is not a valid distance!", vbOKOnly,
"Error")

Use the same approach as with the result message.

MessageBox. Show(
String. For mat (
rmGetString("{0} is not a valid distance!"),
di stanceText. Text),
rmGetString("Error"),
MessageBoxBut t ons. K,
MessageBox! con. Error);

MsgBox(String. Format (rm Get String("{0} is not a valid distance!"),
Di stanceText. Text), vbOKOnly, rm GetString("Error"))

Resource the message box for the invalid speed in the same way.
Culture-specific issues

The Load event initializes some user interface items such as the speeding fine label and
the current time label.

private void Mii nForm Load(object sender, System EventArgs e)

{
speedi ngFi ne. Text = "£500";

current Ti ne. Text = DateTi nme. Now. ToString();
}

Private Sub Forml_Load(ByVal sender As System Object, ByVal e As
Syst em Event Args) Handl es MyBase. Load

speedi ngFi ne. Text = "£500"

current Ti ne. Text = Dat eTi me. Now. ToSt ri ng()
End Sub
The current time is properly formatted. The ToString method converts the time to a string
using the default formatting rules of the current culture. However the fine is hard code to
£500. It can be fixed using the int. ToString method.

In US miles are used instead of kilometers. The code below checks if the current culture
is English (US). If it is the labels and initial values are set to US system. Otherwise the
metric system is used.

Multilizer Localization Guide 126

C# private void Mi nForm Load(object sender, System EventArgs e)

{

rm = new Resour ceManager (" Dcal c. Resource", this. GetType().Assenbly);

int fine = 500;
speedi ngFi ne. Text = fine. ToString("C");
current Ti ne. Text = DateTi nme. Now. ToString();

currentLocal e. Text = Culturelnfo. CurrentCul ture. Nati veNane;
current Language. Text = rm Get Stri ng("Language");

if (Application.CurrentCulture.LCl D == 0x0409)

di stancelLabel . Text = rmGetString("in niles");
speedLabel . Text = rm Get String(" nph");
di st anceText. Text = "100";
speedText. Text = "55";

}

el se

{
di stancelLabel . Text = rm GetString("in kilometres");
speedLabel . Text = rm Get String("km h");

di st anceText. Text = "120";
speedText. Text = "100";
}
}
Visual Basic Private Sub Mai nForm Load(ByVal sender As System Object, ByVal e As

System Event Args) Handl es MyBase. Load

Speedi ngFi ne. Text = For mat Currency(500)
Current Ti ne. Text = For mat Dat eTi me(Now)

Current Local e. Text = Application. CurrentCulture. Nati veNane()
Cur r ent Language. Text = rm Get Stri ng("Language")

If Application.CurrentCulture.LCID = &4409 Then
Di stancelLabel . Text = rm GetString("in mles")
SpeedLabel . Text = rm Get String(" nph")

Di st anceText. Text = "100"
SpeedText . Text = "55"
El se
Di st ancelLabel . Text = rm Get String("in kil ometres")
SpeedLabel . Text = rm Get String("km h")

Di st anceText. Text = "120"
SpeedText . Text = "100"
End If

End Sub

Now we have fully internationalized the source code. Make sure that you added every
single string inside the rm.GetString method to the resource file.

Determine startup language at command-line

In order to test different locale we add one command line parameter to the application.
The parameter - | ang: i d, where id is the culture identifier that specifies the culture that
the application uses.

This parameter is passed from Multilizer when running localized version of the software
from within Multilizer. The parameter to pass from Multilizer can be altered from target
settings.

Multilizer Localization Guide

127

C# static void Main(string[] args)

/1 The application can have a comuand |ine paraneter that specifies the

culture
bool found = fal se;
if (args.Length > 0)

for (int i = 0; i < args.Length; i++)

{
string str = args[i];
int index = str.lndexCf("-lang:");

if (index == 0)

{
str = str.Renove(0, 6);
if (str !t="")
{

Culturelnfo ci = new Culturelnfo(str);

Thread. Current Thread. CurrentU Cul ture = ci;

if (!ci.lsNeutral Culture)

Thread. Current Thread. CurrentCulture = ci;

}

found = true;
br eak;
}
}
}

if (!found)

Thread. Current Thread. Current Ul Cul ture = Cul turel nfo. CurrentCul ture;

Appl i cation. Run(new Mai nForm());
}

Multilizer Localization Guide 128

Visual Basic Public Sub New(ByVal culture As String)
If culture <> "" Then
Try

Thread. Current Thread. Current Ul Cul ture = New Cul turel nfo(cul ture)
Catch e As Argunent Exception
MessageBox. Show(Me, e. Message, "Bad comand-|ine argument")
End Try
End | f

InitializeConponent ()
End Sub

<Syst em STAThreadAttribute()> _
Publ i ¢ Shared Sub Main()

Mai n takes an optional argunment identifying the culture you'd |ike
di spl ayed.

Dimargs() As String = System Environment. Get ConmandLi neAr gs()
Dimi
Dimstr As String
DimstrCulture As String = ""
If args.Length > 0 Then
For i = 0 To args.Length - 1
str = args(i)
If str.IndexOF("-lang:") = 0 Then
str = str.Renove(0, 6)
If str <> "" Then
strCulture = str
End If
End |f
Next
End |f
Appl i cation. Run(New nai nforn(strCulture))
End Sub

Miscellaneous

Add icon

In order to be able to localize icons, software must not use .NET default icon; specifying
an icon other than the default one will make it possible to localize the icon later with
Multilizer application.

Unicode

Although not related to internationalization, .NET support for Unicode® improves

localization quality. There are no more code-page related issues, such as non-readable
characters appearing in the software.

Create Multilizer Project

In order to localize .NET software, you have to create a Multilizer p%lect. This is

described in the first part of the manual, chapter p.

Specify Localization options

After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful, but in this tutorial we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

Multilizer Localization Guide 129

All .NET-specific options are gathered under the corresponding target dialog. If there are
many targets in one project, you can set different localization options to all, if needed.

NOTEI .
Encodings

Encodings tab shows the languages of project. Because .NET is Unicode-based, the only
encoding for all languages is UTF-8. All .NET ResX resources are UTF-8 encoded.

x
— Project file
E:\DemoshDeale HET \wb\Dcalc. «bproj J
— Optionz
Encodings | P'ru:uieu:tl Fontz I [ME I Dutputl Exchude filesl
M ative language: [ative encoding:
| English =l JutFs =l
Language | Encoding |
Firnizh ITF-a
Englizh ITF-&
k. Cancel Drefauilt Help

Figure 118: Encodings for localized software.

Multilizer Localization Guide 130

WARNING!

Project

¥isual Studio .NET Project Target x|

— Project file
IEZ"'.D emoshDcale MET \wbhDeale. vbproj J

— Optionz
Encodings Project |F|:|nts I [ME I Dutputl E xzlude files

— Optiohz
[+ Scanimages fram the form datz
[+ Set RightToleft property

— Azzembly options
[+ Create the satelite assemblies

[+ Private rezources in the satellite azsemblies

— Resource file optionz
[+ Delete the localized resx files after the build process

[+ Delete the .rezources files after the build process

k. Cancel Drefauilt Help

Figure 119: .NET Localization options
Options

Scan images from the form data enables all pictures embedded in the form resources to
be scanned.

Set RightToLeft property affects localization of RTL (right-to-left) languages; this property
affects how texts are aligned in its placeholder. Having this feature checked ensures that
text alignment is mirrored when localization to RTL-languages, such as Hebrew and
Arabic.

Assembly options

Check ‘Create the satellite assemblies’, if you want that Multilizer creates the satellite dll's.
In order to do this, you have to specify the paths to Assembly Linker and Resource
Generator (- [Bpecify .NET tools location] p. [L36). If this option is not checked, Multilizer
creates localized resource files.

Check ‘Private resources in the satellite assemblies’, if you want that generated
resources are not visible to other assemblies.

Resource file options
When Multilizer creates localized satellite assembilies, there are a lot of intermediary files

created. By checking both options here, all intermediary files created by Multilizer will be
deleted after build.

Multilizer Localization Guide

131

Fonts

On Fonts tab user can specify the font of localized software. Furthermore, rules can be
set to apply fonts on certain conditions.

Default settings are recommended, because they are strictly based on Windows

standards.

¥isual studio .NET Projeck Targek

— Project file

E:“\DemoshDeale. ME T YwbhDicalz. vbpro

— Optionz

Localize fonts:

Encndingsl Project Fonts |IME I Dutputl Exchude filesl

Fonts ta be uzed:

IWhen the native Latin font iz “Wicrozoft Sans Senf' and size iz 8

=

Script | Font name | Size | Edit... |
Chineze, zsimplified SimzLn 9
Cyrillic Mizrozoft Sans Serf a
Japanesze kS Ul Gothic 9
K.orean Gulim 9
Latin Microzoft Sans Serif a
k. Cancel Drefauilt Help

Figure 120: Font options for localized .NET software.

IME

IME (Input Method Editor) settings specify the input method editor (IME) to use for
converting keyboard input to Asian language characters.

Multilizer Localization Guide

132

¥isual studio .MET Projeckt Targek

— Project file

alc.ME T \whhDzale. vbproj

— Optionz

Default Simplified Chingse input method:

Encndingsl F"ru:uieu:tl Fontz IME |Dutput| Exclude filesl

I Chingse

[efault Traditional Chinese input method:

L

I Chingse

Default Japaneze input method:

K1

I Hiragana

Default E.orean input method:

L

I Hangul, full

L

Ok

Cancel

Default |

Help

Figure 121: IME options for software localized to Far Eastern languages.

IME settings are enabled only if Multilizer project includes languages that use IME.

The IME settings here will apply corresponding value to IMEMode property in software

localized to Chinese, Japanese, and Korean.

Output

Output directory lets use specify where to store localized items.

Multilizer Localization Guide 133

¥isual Studio .NET Project Target x|

— Project file
IE:'&D emozhDzale. NET \whi\Dcale vbproj J

— Optionz
Encndingsl F"ru:uieu:tl Fonts I IME Dutput | Exclude filesl

Output directon:
[EDemoshDoalcNE T wb'bin

] 4 | Cancel Default Help

Figure 122: Output options for .NET software.

Translate Project

For testing purpose, you can translate the software by using pseudo-languages (C.f.
Pseudo language| p. ; right-click language column, choose properties, and select the
pseudo-language options. This will fill translation grid with pseudo-language translations.

Wysiwyg

Besides just translating, Multilizer allows editing of Ul (user interface) elements. This is
useful in cases, where original software was not designed for localization, and translated
strings don't fit in the placeholders.

Translation with Multilizer showing visually the changes in Ul is referred as Wysiwyg in
this manual. Wysiwyg is enabled both in forms editing as well as menu editing, as shown
in following images.

Multilizer Localization Guide 134

L itz 0 - ED v’ D abe ST wh' D sl noge ‘uﬂ
Fle Edt Fearch Wew Froject Took Help
DEHDRE » T IR [=1 »
S Lt J ouivea tine Catcuior A=l
H 23 Forre
= [msnfom it
| Mmnidems i dormy
B Sheg
N . ;
I durwg
- .
p Tl deinwTe
Oom i oy
Canand bocales dunwTe
Uzer mierlscs langusge: gy
I
Conbest [Natrve - | Finmish |=]
| Felsnbdiani. Helphdany Ak Abail. Tisl ol
CalculateBution. ToolTip Calculates the mvange =
drreineg fime
mirmrrdl mrmial shal Trel Soeees inesia: .:I
Lol =
Db 10079 2002 1 3 0500
E Lapees tirrae: 3000
] = .:I
B top [Vi 37 Stuiics]
ez | [

| EX

Figure 123: Localizing forms of .NET software visually.

Multilizer Localization Guide 135

=100

[EVemsitizar 6.0 - £ Danees Dabo M T vh' Deslcnage
e Eot Seanch Wiew Eroledt Took Help

== W RN R R Y p—y =k
=& Deale vhpiog Tundedids Sl

Frll "

= [msniom

= MenMeng
-] Shege

T+

Conbest [Native | Finmish
Ilanhdany Helphdeny &k Ahoul Tied o
fsintdeny. Fiebdenu Ex Exil Lopeta
|| Mlainhdanu. Filahiznn Tes Fila Tiedosto

1=

[

Lmgd
Dot 70070 ANE T4 Y

E Lspees tirvee 5000 rrs

St 11

| I ;_,E' Vabdata | 70 Suﬁtﬁtt.

]

L e

=3

Figure 124: Localizing menus of .NET software visually.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

MORE INFD
« Pre-translate project, p.
Prepare project for translation, p. El

« Bhare translation work] p.
p.

Build Localized Versions

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files.

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run.

Multilizer Localization Guide 136

NOTE!

= Ajoaikalaskin
Tiedosto Chje

Ajomatk.a

120 kilometreizzd Laske |

Eezkimaarainen ajonopeus

100 kmsh
Ylinopeuszakko: 200,00 £
Paivimaara ja aika: 22122002 110800
Yoimazsaoleva paikanne: guomi [Suomi]
F.ayttalitternar kil FUomi

Figure 125: Localized .NET software.

In order to use the satellite assembly files they must locate on the sub directories of the
main assembly file (Dcal c. exe). By default Visual Studio .NET place the EXE file to the
bi n or bi n\ Debug subdirectory. When running the application from Multilizer, Multilizer
copies the application file to the project’'s main directory (e.g. bi n\ Debug\ Dcal c. exe ->

Dcal c. exe). Run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run.

Specify .NET tools location
In order to create assembly DLLs, Multilizer needs to know the location of .NET tools.
To modify the settings, choose Tools->Options..., select .NET, Tools.

[Eveapowes iy garersion ol
big MET |F".G.-ij?\.'|'|'-|....-. iU T Lyt] 1 01T e
. Trirans g hon fad
';_;‘__ THE P H b Yo S 8E T GRS | T sl
+ [Toangai Fugras s o gare won il
b) Drisdpds] s Bl !f Al ipeesl | Wbl Shuachn WET JTOCAC w5 Fiaaseah SIS | DUONAS WD Pl P
L | lyes
j My
) Pairn
o Sy
~J Vsl B
| Wi

Figure 126: Specifying of .NET tools.

Multilizer Localization Guide 137

Excluding Properties from localization

Not all string properties are intended for localization. Localization of them can even result
in crash of the software. In order to prevent this from happening, Multilizer excludes by
default some of the string properties.

In order to exclude strings from localization, you can

» Specify what string-type properties are excluded for a .NET component

e Specify what properties are always excluded

These settings will prevent Multilizer from adding them in localization project.

The settings discussed here affect the way that Multilizer scans ResX data.

Exclude properties by components

To exclude properties by components, choose Tools>Options..., select .NET,

Components.
[Ervitpevies Sarsn | e | E mchuckesi -
= MET Crarallipoaas DrpmaflepedaErg Hidden conpren
& Cramall sraers winviss o Dy - Cagiors cordal
E schudsd propariar Squher L ool el e corgersTd

S irviarn [t i 0 oo prrnaend Hackbim coarmeonami

X

L |

L |

Farir Zpriam Lt i 3 e Fickder =araponen P |
L |

T i - =

- Jwtbern Da Oy DidiseCoiwection Hadden congeinenl
F Dedphd e v B S [Dhter Dibciatnaontss Haden Conpeeiend
) Ay tbary Timia DRalb (isDbC paceawnd Mickien ooraparesed
| Faliei T S priarn i mis Chal b Dl pewrscwnn e congeneni
—J Fairn iy D L b Ll i neiwiaden. Hickden corgerend g
1 Sunbar Surimrn o Cearallenl (iacteCs . Heden corsporand
S W B e Swviers Dafa Ceariellenl Diaclelon Hakden cormeoreml
- Fpibra Dwa Cegeielhenl Disclellal . Habden corsgenenl

Sptbera [ata Sl SRCoNwaa] Fabdern Gongeiiedd
Epdbars Times Trillesd S erwaonnd Halden coreaead
S gy 1 i 5 ol Sl i ki oo

Spriery Diasgra vhey | ewnil o ke ri corgaranl
Zurimm [agrmbc) Fedorwresiou Hedden carapomand
Srriers [lagrarbce Frocear Fackbers cormereml
Ipttrn DmcimpSorvien Dmscions | Haiden corgeneni
Spibera Diswoomp oo [lesoinapd . Fadden ongeonednd
Eptbarn T Puidieg Prindlasaan Halden oorgeaead
iy BT Vs prisrwins’ S hama Hakden corpenend
Smimr Bansgng Fensgelioms iideni corgemsrd

Surimm SarsceFmomeripramiast Hoden coraporand
S Tewrt Tirat Hichdrs carmponend
St e F e Bt Fictas bl :I

Figure 127: Excluding properties by components in .NET localization.

This dialog lets you specify the excluded properties of specific components. You can
specify one or more properties that are excluded from scanning for each component.

This dialog is also used to configure the visual representation of each component
(>Misual Representation] p. [L15).

Exclude properties by name

To exclude properties by name, choose Tools>Options..., select .NET, Excluded
properties.

Multilizer Localization Guide

138

=]
!_| [T | Fropariy 1 P |
1 MET T
[S 0 Custp i L
N Lo |
[el B |
r‘:__‘_ lﬁml.—.:
{1 Dt e S sl Eges_ |
L] Trign
| Halale Y o
) Paln Q
) Seanbuar
") Vsl B
| Wi

o | cwed

Figure 128: Excluding properties by name in VCL binary localization.

This dialog lets you specify the properties that are not localized, and never included in

Multilizer project.

Visual Representation

User interface of .NET software is developed using visual components.

There are tens of standard components, and an increasing number of third-party
components. In order to display any component correctly, Multilizer allows users to
configure the visual representation of any component.

All standard components and a few 3rd-party components are defined already.

Components whose visual representation is not defined are shown with yellow

placeholder in Wysiwyg.

Driving Time Calculator M=l B3

—Driving distance

—Average driving speed

Curobam Wilirda e
Cuackarm Wlinelos Tuactarr | Laske

Curetarn WUinelee Turator
L

octarm Wiinclmae s Farme Custarr
n

Figure 129: Visual form editor with unknown .NET controls.

Multilizer Localization Guide

139

To exclude properties by components, choose Tools>Options..., select .NET,
Components. Choose Add.. to add new component.

.

Addcompement
[P E rachoakis poapaini pirk:
| s sheruwancionws Formes Lated
Graph 1
A

Figure 130: Specifying visual representation for .NET control.

Write component name as specified in .NET namespace. Choose from Graph the
appropriate representation; a preview is shown automatically.

After next re-scan of project selected visual representation is applied in Wysiwyg, as

shown in next picture.

Driving Time Calculator

—Driving distance
durnmmy

—Average diving speed
durnrmy

Speeding fine;
Date and time:
Current locale:

Izer interface language:

durnrmy
durnmy
durnmy

durnrmy

P[] B3

Figure 131: Visual Editor recognizing all .NET controls.

a Visual Representation configurations can be shared between team members; you can
both import and export the settings as Multilizer item files.

TIfl

Multilizer Localization Guide 140

Java Tutorial

This tutorial describes localization of J2SE/J2EE software.

Required product(s): Multilizer Enterprise
Multilizer for Java

Sample(s): <mldir>/java/dcalc/

Tutorial(s): -

e To learn the basics of localization of Java software and localization prerequisites, go
through the entire tutorial. It requires knowledge of Java programming, and that you
have am existing Java development environment installed on your computer.

- |ntroduction| p. 140}

« To learn how to use Multilizer for Java software localization, create a Multilizer project
based on the sample application.
- Create Multilizer Project] p.

Introduction

Localization of Java software is based on translating resource bundles. Resource
bundles contain all strings intended for localization. Resource Bundles can be either List
resource bundles or Property Resource Bundles. Both are supported by Multilizer.

Multilizer allows localization of the following Java application files containing resource
bundles:

e JBuilder project files .(jpr, .jpx)

e Java archive files (.jar)

* Resource Bundles (.properties)

e Java list resource bundles (.java)

In addition Multilizer supports localization of .java source code files (>
Localization Tutorial| p. [L67).

Because Java code is also embedded in XML, Multilizer supports localization of Java
code embedded in XML (= XML Tutorial] p. [[63).

Localization of Resource Bundles

Java standard edition provides support for internationalization in j ava. uti | and

j ava. t ext packages. Localization is mainly done through resource bundles. This
chapter covers only the basic internationalization (118N). Prefer 118N books and web sites
to get more information about. An excellent start is the Java tutorial at
http://www.javasoft.com/|

http://www.javasoft.com/

Multilizer Localization Guide 141

The following picture describes the Java standard edition localization process with
resource bundles and Multilizer.

Translated
Project file Project file

i >) English
g‘ratl)té)veerty files - -) property files
@ [l b @ [] @ German

property files

French
Multilizer Multilizer Builder or property files
application application Multilizer

Programmer Translators Programmer

Figure 132 Java localization process with resource bundles

The programmer uses Multilizer to extract strings from the original resource bundle (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource bundles (3). As the result there will
be one resource bundle for each localized language.

The following figure shows the files that Multilizer uses in the Java standard edition
localization process.

Resource file Project file Localized resource files

sample.properties @ sample.mpr @ sample_en.properties

—> —> | sample_de.properties

sample_fr.properties

Figure 133 The files of the Java localization process with property resource bundles

Internationalization

Before localizing a Java application, developer needs to put all localizable strings in
resource bundles. This is called resourcing, and implies removing hard-coded strings. In
addition he must use ResourceBundle class to get strings from the resource bundles.

This all is called internationalization.

The result of internationalization is modified .java files, and one or many .properties files
that contain the strings.

Internationalization traditionally involves a lot of manual work, but modern Java
development environments include Internationalization Wizards that do the work for the
developer.

JBuilder Resource Wizard

In JBuilder you can create the resource bundle easily by using a wizard: Wizards |
Resource Strings. The wizard scans your source code, creates the bundle and makes
the necessary modifications in your source code.

Multilizer Localization Guide 142

Figure 134 JBuilder Resource wizard

Press New and change the Name to dcalc and Type to PropertyResourceBundle. Press
OK. Press Next twice. The wizard extracts strings from the source code. Press Finish to
complete the wizard.

NetBeans IDE 3.5.1
NetBeans IDE includes Internationalization Wizard that takes care of internationalization

of hard-coded strings. It is invoked from main menu:
Tools=>Internationalization-> Internationalization Wizard...

Figure 135: Internationalization Wizard of netBeans IDE.

Multilizer Localization Guide 143

NOTEI

After running the Wizard

hel pMenu. set Label (" Hel p");

becomes

hel pMenu. set Label (j ava. util. ResourceBundl e. get Bundl e("dcal ¢c").get String("
Hel p));

Manual internationalization

In plain JDK create the PropertyResourceBundle by hand and take it in use.

public class MinFrane extends Frane

{

static ResourceBundl e res = ResourceBundl e. get Bundl e("dcal ¢c");

Wrap all hard coded strings inside the res.getString() method. Add all keys and their
native translations to the bundle. Remember that key values in a bundle aren’t allowed to
contain e.g. space characters and you have to use Unicode escapes for non-ASCII
characters.

fineLabel . set Text (res. get String("dummy"));

| abel 4. set Text (res. get String("Speeding_fine_"));
| abel 5. set Text(res.getString("Date_and_time_"));
dat eLabel . set Text (res. get Stri ng("dunmy"));

| abel 7. set Text(res.getString("Current_locale_"));
| ocal eLabel . set Text (res. get Stri ng("dunmy"));

| abel 9. set Text (res.getString("User_interface"));

| anguagelLabel . set Text (res.get String("English"));

1

The last String ("English") should not be localized by translating it in a resource bundle.
Remove the line and add the following code to the constructor of MainFrame.

/1 Update the user interface |anguage

| anguagelLabel . set Text (res. get Local e(). get Di spl ayLanguage());

Use al so el sewhere in the Mi nFranme Local e. get Def aul t () instead of
res. getLocal e(). For exanple:

/1 Update the |ocal e | abel
| ocal eLabel . set Text (res. get Local e() . get Di spl ayName()) ;

Resour ceBundl e. get Local e() is supported only by JDK 1.2 or later. With JDK 1.1.8
you have to use Local e. get Def aul t () instead of r es. get Local e().

Create Multilizer Project

In order to localize Java software, you have to create a Multilizer pr&elzct. This is

described in the first part of the manual, chapter p.

Multilizer allows localization of the following Java application files:

« JBuilder project files .(jpr, .jpx)
e Java archive files (.jar)

Multilizer Localization Guide 144

« Resource Bundles (.properties)
e Java list resource bundles (.java)

Specify Localization options

After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful, but in this tutorial we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target

options.
All .NET-specific options are gathered under the corresponding target dialog. If there are
many targets in one project, you can set different localization options to all, if needed.

NOTEI .
Encodings (all Java targets)

Encodings tab shows the languages of project. Because Java uses Unicode escapes in
resource bundles, the only encoding for all languages is Unicode escapes.

JBuilder Target x|

— Project file
IE:'&F‘ngram Filez kultilizer B avahdoalchDoale. jpx J
— Optionz
Encodings | Olutput I Exclude files I
I ative language: I ative encoding:
English IWindDws Western Europe [1252] j
Language | Encoding |
Firnizh YWindows YWestern Europe [1252]
] 4 Cancel | Default Help

Figure 136: Encodings for localized software.
Output (all Java targets)

Output directory lets use specify where to store localized items.

Multilizer Localization Guide 145

JBuilder Target x|

— Project file
IE: SProgram Filezhkultilizer B\ avahdoalchDoale. jpx J

— Optionz
Encodings Output | Exclude files

Output directon:
C:%Program Filez\sultilizer M avahdeals

— File name
Type: IEundle hame j Locale separator: I_

LCoding: IM vI Country geparator: I_

Finrizh [Finland] sample:
Application.exe -* Application fi_ FI.exe

] 4 Cancel | Default Help

Figure 137: Output options for Java software.

Exclude files (JBuilder targets)

When localizing JBuilder projects there may be files that must not be localized. On
Exclude files tab you can specify which files should be excluded from localization.

Multilizer Localization Guide 146

JBuilder Target x|

— Project file
IE: SProgram Filezhkultilizer B\ avahdoalchDoale. jpx J

— Optionz
Encodings | Output Exclude files

Lizt of files that are not zcanned:

|« |0 |+ |+

Eeplace | Add |

] 4 | Cancel | Default | Help

Figure 138: Excluded files for Java software.

Translate Project

For testing purpose, you can translate the software by using pseudo-languages (C.f.
Pseudo language| p. ; right-click language column, choose properties, and select the
pseudo-language options. This will fill translation grid with pseudo-language translations.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

MORE INFD
< Pre-translate project, p.

< Prepare project for translation, p. El

« Bhare translation work] p.

Cranslate] p. 4]

Build Localized Versions

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files. Finally you can run the localized application by right-clicking
the column header (e.g. Finnish) and by choosing Run.

Multilizer Localization Guide

147

& Ajoaikalaskin

Tiedosta Ohje

Anna ajomatka

=10 x|

|| kilometreissa Lazke |

Ylinopeussakko:
Faivamaara ja aika
Faikanne:

Kayttdliittyman kieli:

100,00 <

4. helmikuuta 2004 15:35:35

suomi CSuarmi)

sUomi

Figure 139: Localized Java software.

for more info.

NOTE!

Specify Java tools location

Running localized software from within Multilizer requires that location of Java Virtual

In order to run localized software, you need to specify location of JDK. See next chapter

Machine is specified. To specify it, select Tools>Options...>Java, and click J2SE/J2EE
options. Select desired Virtual Machine from drop-down list.

) Ervaonment
] MET
| Drasipsb e ot H ulichind
-pr
JIME
+ IR

L) Windows

Uual Hacins

I Lo 2malc ™ DR b e o

el s

Figure 140: Specifying Java Virtual Machine location.

Multilizer Localization Guide 148

II@FD

NOTE!

J2ME Tutorial

This tutorial describes localization of J2ME software. For localization of J2SE/J2EE
software, see Pava Tutorial, p. 140}

Required product(s): Multilizer Enterprise
Multilizer for Java

Sample(s): <mldir>/j2me/dcalc/

Tutorial(s): -

e To learn the basics of localizing J2ME applications using Multilizer resource bundle
classes, go through the entire tutorial. It requires knowledge of Java programming,
and that you have am existing Java development environment installed on your
computer.

- |ntroduction| p. [L48]

e To learn how to use Multilizer for J2ME software localization, create a Multilizer
project based on the sample application.
- [Create Multilizer Project] p.

There is more information in Multilizer J2ME help (located at
<mldir>/j2me/Multilizer_me.chm).

J2ME applications can be also localized by using source localization (>[Source |
Localization Tutorialf p. [L67). While this tutorial explains how to use the flexible resource
bundle classes for localization, source localization may be the most useful for localization
of tiny applications with only a couple of localized strings.

Introduction

Java Standard Edition (J2SE) contains very rich support for localization. J2SE contains
locale class, resource bundles and formatting classes. Unfortunately Java Micro Edition
(J2ME) does not contain these classes. It only contains very low-level resource class that
the application can use to access resource file. The current CLDC-configuration has the
following 118N-support:

- java.lang. d ass. get ResourceAsStrean(String nane) that returns the
input stream for the resource file.

- java.lang. System get Property(Stri ng nane).When passed
"microedition.locale" as a parameter this returns the system locale of the
configuration.

In theory this could be just enough support for 118N for simple applications. However
using the get Resour ceAs St r eamto get the localized user interface strings is rather

Multilizer Localization Guide 149

complicated. This is because get Resour ceAsSt r eamis a very low level function. It just
gives you the access to raw resource file data. The J2ME programmer needs to write a
large amount of code to get the localized user interface strings from the resource file.

J2SE contains two kinds of resource files: property files and list files. The property file
contains the translations of the strings in one language, one translation in a row. List files
use similar approach but they represent data inside a Java class. Without having the
resource bundle class a J2ME programmer has two choices to localize his or her
application.

- Write own code on the top of j ava. | ang. Cl ass. get Resour ceAsSt r eam This is
a complicated task and the memory consumption might be too high.

- Change the strings in the java source code. This might seem as an easy solution but
it leads the programmer into troubles if the application source code changes. Either
the programmer needs to do the same changes to every single localized java code
or retranslate the localized java source codes again. Both approaches are difficult to
implement, slow and error prone.

Because J2ME doesn't support property files (through PropertyResourceBundle) nor list
files (through ListPropertyFiles), Multilizer contains a small footprint resource bundle class
and format that is suitable for J2ME.

Localization of Resource Bundles

With Multilizer you are able to globalize your J2ME applications. The

mul tilizer.mcroedition.Properties class has the main role. Using it is pretty
similar to using J2SE PropertyResourceBundles. It's even possible to use your old J2SE
property files directly through it.

mul tilizer. mcroedition works on atop of the CLDC configuration.
mul tilizer.nm croedition is profile independent so it works with any CLDC profile
such as MIDP and PDA profile. 1 t is also small (3 Kbytes) and memory efficient.

Property files may be UTF-8 or ISO8859-1 encoded. This makes the Properties class
backward compatible to ISO8859-1 encoded property files. Using UTF-8 encoding makes
the files more understandable, because you don't have to use Unicode escapes for non-
ASCII characters. UTF-8 also helps conserving the memory because none English UTF-8
files are considerably smaller than Unicode escaped ASCII files.

The following picture describes the J2ME localization process.

Translated
Project file Project file

i > } ; English
glr?)t:)\;erty files property files
@ [l b @ [| @ German

property files
French

Multilizer Multilizer Builder or property files
application application Multilizer

Programmer Translators Programmer

Figure 141 J2ME localization process

Multilizer Localization Guide 150

The programmer uses Multilizer to extract strings from the original property file (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized property files (3). As the result there will be one
property file for each localized language.

The following figure shows the files that Multilizer uses on the J2ME localization process.

Property file Project file Localized property files

sample.properties @ sample.mpr @ en/sample.properties

—> ——> | de/sample.properties
fr/sample.properties

Figure 142 The files of the J2ME localization process

Add the localized property file (e.g. de/ sanpl e. properti es) instead of the original
property file (sanpl e. properti es) to the setup package when building a localized
application.

Application with an English User Interface

There is one J2ME sample in <mldir>/j2ME/dcalc directory. It is an English version of
Dcalc. Open it, compile it, and finally run it.

Depending on the selected emulator, the application looks like this for example:

[(1) rokia 7210 508 MY

Be Iock e

Figure 143 J2ME application with an English Ul

The user interface language is English. In the following chapters we will review how Dcalc
was localized.

Multilizer Localization Guide 151

Internationalization

To globalize a J2ME application you have to resource it. Resourcing means getting rid of
hard coded strings. Most applications contain strings that have been inserted inside the
source code. These strings are hard coded. It is impossible to localize such code without
changing and recompiling the code. When you resource the code you take the strings
from the source code and place them to a resource file that can easily be translated.

The main source code file of the Dcalc sample application is dcal ¢/ Dcal c. j ava.
Use property files

First task is to create the property file and take it in use in the midlet. The property file
used by Dcalc has the same name as the midlet: dcal c. properti es. Using the
property file in the midlet is easy. Just create a

mul tilizer. mcroedition.Properties instance and pass the property file name
as the parameter.

public class Dcal c extends M D et inplenents ComrandLi st ener
{

private Properties prop = new Properties("/dcal c/Dcal c. properties");

}

Use Properties(String) if your property files are in UTF-8 format. This is the case in
the code above.

If you want to use the same format (ISO8859-1) as J2SE property files use
Properties(String, int) instead.

Add strings to property files
The property file format is key<separ at or >val ue. Where the key is the string inside
the get St ri ng method and the value is the translation. The separator can either be a

tab or the ‘=" character.

All hard-coded strings of Dcalc were added in property file, which looks like this:

Di stance (kn) Di stance (km
Speed (km h) Speed (km h)
Driving cal cul ator Driving cal cul ator
Cal c Cal c

About About

Exi t Exi t

Use format function

In Message.java file there was originally a concatenated string like this:

alert.setString(
new | nteger(hours) + " hours " +
new | nteger(mnutes) + " nminutes");

We could resource “hours” and “minutes” by wrapping them with the get St ri ng method.
However that would not be very good internationalization because the above code always
assumes that the message has the following form <hour value> <hour label> <minute
value> <minute label>. There are languages that use the label first and the value next.
Also some countries prefer to show the minutes first and hours next.

Multilizer Localization Guide 152

MORE INFD

NOTE!

To solve this problemnul tili zer. m croedi ti on. MessageFor mat class is used;
there the whole message is put in the message pattern and the pattern is combined with
data at run-time to produce the actual message.

hject[] args = {new I nteger(hours), new Integer(ninutes)};

al ert.setString(MessageFormat. f ormat (
prop.getString("{0} hours {1} m nutes"),
args));

Now the property file contains the message pattern, {0} hours {1} ninutes. The
translator can easily relocate the items in the pattern.

Load strings from property files

Resourcing the code is done with the get St ri ng method. In general you should wrap
every single string that need to be translated inside the get St r i ng method. Thus
instead of writing code like this

private Stringltem di stanceLabel = new Stringltemn
nul I,
"Di stance (km");

... Dcalc uses this
private Stringltem di stanceLabel = new Stringlten

nul |,
prop.getString("Distance (km"));

Conclusions

As shown in the code samples above, Dcalc source code is totally language-
independent. To localize the sample, the only task will be to create localized property
files. This is discussed in next chapter.

This chapter has covered only basic internationalization (I18N). Refer to 118N books and

web sites to get more information. An excellent start is the Java tutorial at
www.javasoft.com.

Create Multilizer Project

In order to localize J2ME software, you have to create a Multilizer project. This is

described in the first part of the manual, chapter p.

Localizable data of J2ME application is located in Resource Bundles (.properties).

Specify Localization options

After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful, but in this tutorial we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

All J2ME-specific options are gathered under the corresponding target (Java Resource
Target) dialog. If there are many targets in one project, you can set different localization
options to all, if needed.

Multilizer Localization Guide 153

Encodings

Encodings tab shows the languages of project. UTF-8 is the native encoding of
Multilizer's Java property files.

x
— Filz
IE:"\F'ru:ugram Filezshultilizer B\ 2metDicalcdcalctDeale. properties) J
— Optionz
Encodingz | Elutputl
M ative language: M ative encoding:
| English =l JuTFs =l
Language | Encoding |
Firnizh UTF-8
k. Cancel Drefauilt Help

Figure 144: Encodings for localized software.

Output

Output directory lets use specify where to store localized items.

Multilizer Localization Guide 154

(i)

MORE INFD

Java Resource Target 5[

— File
IE: 4Program Files\Multilizer B4 2metD calchdealchD cale. properties] J

— Optionz
Encodings Cutput

Output directon:
IE:'&F‘ngram Filezhhultilizer B4 ZmehDcalcydoale

— Fila marna

— Property file optionz
[Comments

[~ Empty lines

Finnizh [Finland] zample:
Application.exe -> fi FIYApplication. exe

] 4 Cancel Default Help

Figure 145: Output options for Java software.

Translate Project

For testing purpose, you can translate the software by using pseudo-languages (=
Pseudo language| p. ; right-click language column, choose properties, and select the
pseudo-language options. This will fill translation grid with pseudo-language translations.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

< Pre-translate project, p.

+ Prepare project for translation, p. p6]

+ Bhare translation work] p.
. [Fansla p. [
Build Localized Versions

Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files.

After this, the localized versions of the application can be created. Edit for example the
build script to include the right property files for each language’s setup packages.

Finally run localized software in emulator to see how it works. Depending on the selected
emulator, the application looks like this for example:

Multilizer Localization Guide 155

k(1) Mekia TEID SDE
Be Tock el

Figure 146: Localized Java software.

In order to run localized software, you need to specify location of JDK. See next chapter
for more info.

=
=
—
sl
b

Configure J2ME options

J2ME emulator and other specific options are configured in Multilizer options dialog;
select Tools->Options...=»Java, and click J2ME options.

Multilizer Localization Guide 156

=

N
i M oo’ Do ok FA0 pIDP_SDE_w1_Tis |_

] =

Figure 147: Specifying J2ME options.

Refer to Multilizer on-line help for more info.

Multilizer Localization Guide 157

Database Tutorial

This tutorial describes localization of databases.

Required product(s): Multilizer Enterprise
Multilizer for Windows

Sample(s): <none>

Tutorial(s): <none>

Introduction

Multilizer supports localization of Interbase databases.

Localization of databases

Database cloning
Multilizer localizes databases by copying the original database and populating the

database with translations of Multilizer project. This approach is called database cloning;
the structure of original database and localized database are identical.

Create Multilizer Project

In order to localize a database, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File>New.... Choose ‘Localize a
database’ on first page of Wizard.

On next page user defines what database, and what fields, to localize.

Multilizer Localization Guide 158

MORE INFD

Database cloning settings

Project Wirard - Dalabase El
Sihazd thin chat il Labshin arsd] Fikds Thal vons vl 1o Bealise " ou i kel i aong babshict el ke
[mimbisse T ksbe e Pl
|Ir|ﬂ|l:~|l1l :I | MAHE :l
Adcheas: = £ MLENVRADMHERT bl
ot a MAHE
|_ =[5 MLUHPOAT nsbis
[alabicin = DESLEFTION
| Crmandations intgpds GOE =] _J . SOUF CE RaME
E _ i | :_IJ:.LEFQHMIJHIH:E
[SO0 Dambsci=ddnkertusss Tesnl solafonsns sdcomnk of PARAHATERMALLE
= B3] MLLAMGUAGE Lalshi
Dgbons | LAHGURGECDDE
FF O hal =+ 3] MLHATRE Labis
LT IE VAL LE
= [MLSUBENVIROKMEMT iabls
= MAKE
=[] MLTRANSLATION tnhis
m CEFRITION
m HOTES -

. SOUECECOUNTEY
s SOUECELAHBLAGE
= TEAGETCOUNTRY =

Hee | Bock [et] _ G|

Database must be either Interbase or MS Access. Database cloning is not support for
other databases.

Address
In database cloning Address is left empty.
Database

Ensure that you can browse to the database file. If you can’t browse to the database file,
database cloning will not work.

Parameters

If database doesn't include date values, SQLDialect can be 1. Otherwise SQLDialect 3
needs to be used.

Tables and Fields.

Doubleclick fields that you want to localize. Right-clicking a field lets you specify, if certain
fields are added as localizable fields or comments in Multilizer project.

Fields that are not marked are cloned as such when building localized versions.
More info

More info on Project Wizard is found in the first part of the manual, chapter
p.

Multilizer Localization Guide 159

Specify Localization options

After finishing the Wizard, you have can review the localization options for database
localization. Normally default options are the most useful, but in this tutorial we will review
all options.

Right-click the localization target in Project Tree, and click properties to see Database
Target options.

Encodings

Encodings tab shows the languages of project. You can also review the original language
and character set here.

Database Target X

[atabaze

|nterbaze
Address:
Databaze;
IE:'xtranslatiu:uns'xtm'xmydl:-ﬁDB j
Parameters: —
ISE!LDiaIe::t=3;Inter|:uase Tranzl zolation=readcommite: LConnect...
— Optionz

Encodings | Fields | Settings |

M ative language: M ative encoding:

IEninsh j IWindDws Western Europe [1252] j
Language | Encoding |
Englizh Windows YWestern Europe [1252]
Firnizh YWindows YWestern Europe [1252]
German YWindows YWestern Europe [1252)

k. Cancel Drefauilt Help

Figure 148: Encodings of database.
Fields

In order to review fields of the database, you have to press connect button. After
connecting you will have the same view to fields as in Project Wizard.

Multilizer Localization Guide 160

Database Target X

[atabaze

I Interbase j

Address:

Databaze;
IE: htranzlationztmbmydb. GO B

Parameters:

ISE!LDiaIe::t=3;Inter|:uase Tranzl zolation=readconmmites

— Optionz
Encodings Fislds |Settings|

i SOURCENAME -]

-6 MLMATIVE table

----- + MATIVEWALUE
=-E] MLSUBENYVIROMNMENT table _I

k. Cancel Drefauilt | Help

Figure 149: Localizable fields.
Settings

For database cloning there is only one setting to choose from: enable/disable size checks
on build.

Enabling this setting will check that translations fit in the fields.

Multilizer Localization Guide 161

Database Target x|

[atabaze

I Interbase j

Address:

Databaze;
IE: htranzlationztmbmydb. GO B

Parameters:

ISE!LDiaIe::t=3;Inter|:uase Tranzl zolation=readconmmites

— Optionz
Encndingsl Field: Settings

— On target rescan
{* | Mever update project's rows
) Always update projects rows
) Update only project's empty raws

— When building incomplete database raws
¥ [lze native
) Uze empty sting
) Skip raw

[~ Disable size checks on build
[+ Clone native databaze files

k. | Cancel Drefauilt Help

Figure 150: Database cloning settings.

Translate Project

For testing purpose, you can translate the database by using pseudo-languages (C.f.
Pseudo language| p. ; right-click language column, choose properties, and select the
pseudo-language options.

This will fill translation grid with pseudo-language translations.

Translation view

Translation view is optimized for simple navigation in database localization projects;
Project tree shows the localizable tables and fields, and lets the user navigate between
them.

Translation grid shows the original (native) language and user can choose the visible
target language.

Multilizer Localization Guide

162

MORE INFD

E-" *Multibeer B0 - L2 branslations 't mlBampr
Fis E@ Ves Pro@id Cousn Pos Tooli Help

D A& e A2

=101 x|

%qfﬂl.‘lzm:h j"
- m I::".I:laml.:linns".l-".nl Contexl [Mﬂi'.'z IFH‘I‘IH’I g
5 [MLNATIVE (¥l Ahart Hylkas T
- 7| 1 Ahart Repart Paruuta raporiti
g MLELEMENT | 2 Abart Repart? Peruuta raporti?
ML T HaMSLATIEN =
3 Ad Vieeir
E 4 All Kaikki
A5 Ara you suUne you want
|| lo delele Fis rEpI]I‘I?
«| G Cancel Paru
7 Cancal - Continue
| | gereralting regpor
] Cincular vanable
- reference for variable
ey mld s o
Frocessed [roves OF. :I
Scanning “HLMATIVE"
Fipeazged 12 e F
Scanmng "HLTRANSLATION" ..
Processed 3522 rows OF
- v anm ll
[Log [Veidate | T Stahus |
o: 2 | [Transist=d | &

Figure 151: Localization view for translating database contents.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

< Pre-translate project, p.

« Prepare project for translation, p. 6]

« Bhare translation work] p.
p.

Build Localized Versions

Create the localized files by choosing Project | Build Localized Files. This creates the

localized database files.

Multilizer Localization Guide 163

XML Tutorial

This tutorial describes localization of any XML file.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

Sample(s): <none>

Tutorial(s): <none>

Introduction

XML (Extensible Markup Language) files consist of markup tags that form elements.
There can be data inside the elements, or nested elements. Inside tags there can be
attributes.

XML-files are normally Unicode-encoded, but other encodings are widely in use. XML-
files can contain just any data.

Multilizer is able to localize XML-file. It also shows XML-file visually, and bitmap data is

shown as an image, for example. Multilizer's wysiwyg for XML makes it extremely easy to
translated XML contents in context.

Localization of XML

Multilizer localizes XML by reading in original file, and writing out either localized files or
one multilingual file. For multilingual files, Multilizer uses xml:lang attribute as defined in
XML-standards.

Multilizer never overwrites original source code file.

Create Multilizer Project

In order to localize a source file, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File>New.... Choose ‘Localize a file’
on first page of Wizard.

On next page, select ‘XML file’ filter, and specify the source code file to localize.

Click next after selecting the XML file to localize.

Multilizer Localization Guide

164

Prefectweant o =

“Eeedennt Hres XML e it sua ased b bl o) 0 baber sl rnore <ML s nd bags.

Tz
Sulact thae akiarents: thal v ward 1o bcakne

Outpead Flae
¥ Looaoed Ge

erm atibule

o atisbute

5 e
B e kb e

i [
B e stinbale
-
i sl by

=-Iaf cen o

i e aiibule
i pubbihed aliihoie

|_tos | voum |

St o
Help | Heck,

[t] Cres_|

Figure 152: XML-options in Project Wizard.

Multilizer lets use define all tags and attributes that need localization.

By default Multilizer interprets data as plain text. Because XML can contain just any data,
Multilizer lets users define the way to interpret data; right-click any node and select

properties to define it.

fon sement x|

¥ Locakos slement
ata tpper

Sirnpla
Acodss
if [d == O
Shoeflsrsegs | "Thir ix & string™i:
alrm
sttt & “This is assiher sizing”)
</ andex

[ok | cowel | Dok | e

Figure 153: Defining an element containing C# source code.

Source code embedded in XML

If XML element contains source code, Multilizer can parse it. This enables translation of
strings in source code without touching the code part. (= Bource Localization Tutorial| p.

L67).

In order to interpret a XML element as source code, right-click a node and select any of

the source code formats.

Multilizer Localization Guide 165

Translate Project

It's extremely easy to translate XML; Multilizer shows the file as Wysiwyg, allowing
translators to see the context. Translations are simply written in the grid, and translator
will see it visually too.

User can navigate in the XML; strings are high-lighted and clicking a string will scroll the
translation grid to corresponding location.

User can also navigate in translation grid, and corresponding string is shown in XML
view.

Translation of embedded source code
Strings in embedded source code are translated just as any string in the project. Just as

explained in[Source Localization Tutorial](p. [L67), Multilizer shows the strings in source
code and allows the translation of them without touching the code itself.

100 =]
Fl= Edt Yesw Prokect Colen Eow Tooks Hep
DEE R& s2e AN BB &8 [=l »
Al </preprocess =
2] L \Pmgram Files\WarkbiShs Zimes

citem type="C&* publshed="ya=z"s

Il Dol is o multilingusd application That calculates tha .|..l|l|.|
1 *about Dealc®

o fibEms :J
Confat]H]Iﬂ Finnigh j:]
languages. lanquage|l] mfo|l] & Paliyan-is-funclienally

nialligible-with-Standand

Hulganan.- Tha- Sopa are-of

BE
1

4 | Anoit-Deale
al | | =
Soarrwe] | T WP an F ke VerbedTwaordeSenh i aa . OF, 3
Elsgresd v 2500 s
Shepg 1
4
(B Log | Y Vekddn | F Staiotics |
5i & Ik ready 4

Figure 154: Localization of strings in C# source code embedded in XML.

Localization of bitmaps

Multilizer is able visualize the localization of embedded bitmaps.

Multilizer Localization Guide

166

MORE INFD

[rmsitilizer 6.0 - Linkithed =101 =
Ele Eot Yes Project Colwen B ook Heip
DEd A& AE AE R &8 F[re =] b
T
Ba) - Jrian verbse/itams =
2] C:\Pogram Filns\WarkinSts «/bookss
CElures
<itam Typas*flag™s
lilerns
= pctungs J
- cEitrainfoe
sitEm namee"dltemate names">RhALGAREBKL< Mtars
citem nama="Dialec =" =PALITY AN {PALITIAMNI, BOGOMIL) . </ items
<itam namea=" nenta"=Palityan is functienally intedligille with Stanids
«lextrainfox
efirfioz
o
citem walua="5 "4 < flems :l
Contest [Pzt | Finksh s Ja]
languages. lanquage|l] mfo|l] & Paliyan-is-funclienally
’ intad ligible-with-Standand
Biulganan.- Tha- Sopar are-of
i 1 Dicale-is-a-multilingual-
g spplication thal- calculates-the: —
| | svarspe drwing-tima
EE] Ancit-Ocak
al |]] tangussges snguage|0] miojo] o i I - |
S T NP an File)y erbed T eaondeZenh s snal . O ﬂ
Elspoess brvee 250 re
Sheps 1
4
[P Log [Vebate | T Stattns
T I ok rescdy I o
More info

Refer to following parts of th

e manual for more information on translating software, and

sharing translation work between team members.

< Pre-translate project, p.

« Prepare project for translation, p. 6]

+ Bhare translation work] p.

[rranslate] p. 4]

Build Localized Versions

Create the localized files by
localized files.

choosing Project | Build Localized Files. This creates the

Multilizer Localization Guide 167

Source Localization Tutorial

This tutorial describes localization of any source file formats that can be localized with

Multilizer.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

Sample(s): <none>

Tutorial(s): <none>

Introduction

Localization of single source code files, as described in this tutorial, should be used in
special cases only. If possible, use binary localization or any other platform specific
localization as described in other tutorials.

Localization of source codes

Multilizer detects strings from various source code formats, and using Multilizer for
translation makes the work safe; Multilizer doesn't allow modification of code, but just
translation of strings.

Multilizer localizes source code files by reading in original source file(s), and writing out
localized files, one for each language. Multilizer never overwrites original source code file.

Create Multilizer Project

In order to localize a source file, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File>New.... Choose ‘Localize a file’
on first page of Wizard.

On next page, select 'Source code file' filter, and specify the source code file to localize.

Then continue Project Wizard as usually. More info on Project Wizard is found in the first

part of the manual, chapter p.

Translate Project

It's extremely easy to translate source code file; Multilizer shows source code as
Wysiwyg, allowing translators to see the context. Yet, the source code can't be altered.
Translations are simply written in the grid.

Multilizer Localization Guide

168

MORE INFD

l:"'\r'nllll.u-l b0 - Uintkled -lmil
Fle Edt YWesw Project Colen Eow Tooks Help
DFE RS e AW BB #F| b [fme =l »
Ba B
A C:\Program Filna'Ud wllikze
I.:HI.:
[camcel §
TEHeLlp ' .
: =l
Cantat | Mativn | Fimnish |
21]
L E] Cancal
EE &Help
L | | *
|
Elagrind brvar | 30 ra
Sieps 01
Encis 1 J
[} Log | &Y Vebdae | 1 Staetics |
[@y | [Mok reedy | 4

Figure 155: Localization view for translating source code.

User can navigate in the source code; strings are high-lighted and clicking a string will

scroll the translation grid to corresponding location.

User can also navigate in translation grid, and corresponding string is shown in code
view.

More info

Refer to following parts of the manual for more information on translating software, and

sharing translation work between team members.

Pre-translate project, p.

Prepare project for translation, p. 26|

Bhare translation work] p.
p.

Build Localized Versions

Create the localized files by choosing Project | Build Localized Files. This creates the
localized files.

Multilizer Localization Guide 169

Data File Localization Tutorial

This tutorial describes localization of any data files that can be localized with Multilizer.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

Sample(s): <mldir>/data/key/product/sample.txt
<mldir>/data/ini/product/sample.txt

Tutorial(s): <none>

Introduction

Besides localizing resource files and source code files, Multilizer also localizes data files,
such as INI-files, SHL-files, KEY-files, and XML.

INI-files are typical configuration files for Windows software. SHL-files are used by
InstallShield®, and they contain strings shown in installation software.

This tutorial covers localization of INI, SHL, and KEY files. XML localization is described
in another tutorial.

Localization of data files

Multilizer detects strings from various data file formats, and using Multilizer for translation
makes the work safe; Multilizer doesn't allow modification anything but the strings.

Multilizer localizes data files by reading in original file(s) and writing out localized files,
one for each language. Multilizer never overwrites original file.

Create Multilizer Project

In order to localize a data file, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File>New.... Choose ‘Localize a file’
on first page of Wizard.

On next page, select 'Ini file' or ‘Key file’ filter, and specify the file to localize.

Ini/shl file specifics

Project Wizard allow users to specify which sections and keys in INI/SHL files require
localization. Only selected keys will appear in Multilizer translation grid.

Multilizer Localization Guide 170

Target Wizard - [El

“Eeedenn Hre I bosgn Bk e s o bz Vo) o baber e Id e ned keis

Empz
Sabaed i ki thil o vt 16 localine
= Bomar
Amcnd
=1 Tiedz
Aicoid]
Hn.'.lﬂ'_'f

el all | Wiraebee] ol i T |
Hee | Box [e | Coos |
Figure 156: Selecting INI-file keys for translation.
Then continue Project Wizard as usually. More info on Project Wizard is found in the first
part of the manual, chapter p.

Translate Project

Translation is done in translation grid. Only those strings defined for translation are
shown in the grid.

INI/SHL file properties

In order to redefine keys for translation, right-click corresponding target in project view,
and choose properties. In target dialog ‘Keys’ tab will show the keys that are marked for
localization.

Multilizer Localization Guide 171

ST -

- Dpsone
Ercodngs Far | Dutgas | Propasia: |
Gelact tha ke thal you ranl o locsos:
Gpones
Flecod
Tesds
Flecod
Flmcod?
Flecod]

Goahact all | nsatect J | i i |

Figure 157: INI-file target; keys marked for localization.
Key file properties

Key-files are extremely simple text files. Each row contains a key-value pair. In order to
redefine exact format, right-click corresponding target in project view and choose
properties. In target dialog ‘Format’ tab will show the format specification.

X
_m
Encodngs | Oupa Foma |
e
i =]
lorsieiae [0
Sannphe
key vk
| DE, I Cancsl [l i

Figure 158: Key-file target; defining key file format.

Key-files are extremely simple text files. Each row contains a key-value pair. In order to
redefine exact format, right-click corresponding target in project view and choose
properties. In target dialog ‘Format’ tab will show the format specification.

Multilizer Localization Guide 172

Another important option is the encoding shown on ‘Encodings’ tab; it allows user to
specify encoding for each target language. User can also set the encoding for original file,
if Multilizer failed in detecting it correctly.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

MORE INFD
« Pre-translate project, p.

< Prepare project for translation, p. @l

+ [Bhare translation work] p.
p.

Build Localized Versions

Create the localized files by choosing Project | Build Localized Files. This creates the
localized data files.

Multilizer Localization Guide 173

Multilizer Localization Guide

174

Index
K

NET, 7 Kilometer, 97

A km/h, 97
Auto-navigation, 67 L

B language
Binary, 92 native, 11

C Localization
CLDC, 148 binary, 92

Close-to matches, 58
D
DateTimeToStr, 97

DLL, 103

Enterprise, 7
Exchange package
Secure the contents, 30

F

filter strings, 30, 37

Format, 97, 100

Fuzzy matching, 58
I

Info page, 18

Installation, 8

InstallShield, 169

Internationalization, 77, 93, 122

ITE, 105

J2SE, 148

Localization Kit, 29
localization targets, 31
target, 11
M
Metric system, 100
Mile, 97
mph, 97
MPR, 11
Multilizer editions, 7
Multilizer package
MLP, 32
Multilizer Project, 11
Multilizer project file

creating, 28

native, 11

P
Perfect matches, 58
Project

Statistics, 71

Multilizer Localization Guide

175

project tree, 18

Project view, 18

quick fix, 67
R

Resource string, 94
resource type, 19
resources

bitmap, 20

cursors, 20

Dialog, 20

Form, 20

icons, 20, See

SDK, 120
SDLX, 36
Statistics, 71
Stylesheet
XML, 72
System

registry, 103

target, 11, 20

add, 21

modify, 21

remove, 21
text-file, 35
TMX, 34
TRADOS, 35
translation grid, 20
Translation Kit

Secure the contents, 30
translation work-place, 18

Translator's Workbench, 35

U
USA, 97, 100
UTF-8, 149

V,W
VCL, 7
Visual C++, 75
wysiwyg, 20

Wysiwyg, 89, 111, 133
X
XML, 71

XSL, 72

Multilizer Localization Guide 176

Table of figures

jgure 1: Organizing the fileS t0 I0CAIIZE.ooviviiiiiiieieeeeee e 12
igure 2: Selection between localizing file and localizing databases.cccccccceeeeiiiiee e, 13
igure 3: Specifying files to be Included IN ProjJECt. ..o 13
Figure 4: SPeCIfyiNg Tl tYPE. ..ot aanarnrnanenee 14
FIQUIE 5: SPECITYING FIlE LY. w..iiieeiiiiieeieeee ettt ee e e et s e et eeaeeeeaesase s sesesnnsasesnnssaeennssnne 15
igure 6: Specifying project information fOr NEW ProjECL.ccuvviiiiiiiiiiiiiieeee e 16
igure 7: Selecting |anQUAGES O PIOJECT. ..c.u...iieee it ieeee e e et ee e e et s e et teeeeseteesaeenassasesnnsesesnnaseresnnseses 16
igure 8: Multilizer project view, with project tree, translation work-place (translation grid and visual editor),
e T N oY T T 19
Figure 9: Project tree with mainform resource shown in bold.cccvvuvieiiiicciiiiiiiiccceee e 20
Figure 10: Dialog displaying project targets (ProjeCt2TargetS...) ... 21
F-igure 11: Adding new target by file tYPe. ..c.ccooveeeiiiiiiiii e 22
igure 12: Translation Workplace; translation grid and visual €ditOr.eiiiuuiiiiieuiiiiiiiieiiiiiiiieieiaeeee. 23
IGUIE 13: INTO PAOC. oo 24
Figure 14: Log view shows information of scan, make, and build proCeSSes.ccoovcuviiiiiiiriiiiiiiiiieiaaaannnas 24
Figure 15: Statistics panel with quick iNfO Of tranSIAtioNS.uueuuueuiiiii e 25
Figure 16: Default work-flow with MUltilizer. ... 28
Figure 17: RUNNING EXCRANGE WIZAIU.ccooveiiiiiiieieeeee ettt a e e e e e e e e e e e e aeaaaeaa s 29
Eigure 18: Specifying the targets and resources to be exchanged.ueeveiiiiiiiiieiiiiiiiiiiiiiiieeeeeee 30
igure 19: Filtering rows that are eXChaNGEA.ccuuvueiiiieeiieeeee et ee e e e e e e eeeeaaeeeaneeeeeeeeeas 30
Figure 20: Specifying project Info, PASSWOIA PrOTECHION.uvvvieeieieiieieeeeeeeieiiiieeeeeeseseereeereeeesaseneeeeeeeeanannes 31
Figure 21: Adding targets in eXChange PACKAGE.uuuveeeeieeeeieeeeeeeeeeeee e e et e aee s st eeeeaeeesaaneeeeeeeeeeaas 31
Figure 22: Specifying additional files to be included in exchange package.ccooooveiiiiiiiiiiiini. 32
F-igure 23: Specifying the name for exchange PACKAGE.cccuuuuuuuurnniiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeas 32
igure 24: Building the exchange package. ... 33
igure 25: RUNNING EXPOIt WIZANA.ccccoeeeeeeeie e 34
igure 26: Specifying export file and TMX file FOrMaL.ccooiiuuiiiiiiiiiiiiii e 34
Figure 27: Export settings for TRADOS-compatible TMX.ccoooiiiiiiiiiiiicieieeeeeeeeeeeeeee e 35
Figure 28: Specifying export file and text file TOrMAL.oouieuuiiiiiiiiiiiies e e e eeee e e e e eeeeeeaasaaen 36
Figure 29: Filtering of rows that are EXPOIEO.ccciueeeeiiieeeee ettt a e e e e e eeeaeeeeeeeeeeeeeeeeeseeaeeees 37
igure 30: RUNNING IMPOIE WIZAID.ccoiiiieiiiieiieieeeee et e ettt s e e e s e e e e taaessaeseeesesannsaseseseeesenssnnnn 38
igure 31: Specifying the file 10 be IMPOIEA.ccceeeeieiieiee e e e eee e e e e e e eeeeeeas 39
Figure 32: Selecting file type for the file to be Imported.cccooviii e 39
Figure 33: SPecifying IMPOIt OPTIONS.vuiiieeiiieeeeeieeeee ettt e e e e e et eeeeeeeese et eeeeeaeeesaneeeeeeeeeesaannneeeeeeeessnns 40
Figure 34: Specifying languages to be imported from TMX file.o.cooovviiiiiiiiiiiiiiiiic 41
Figure 35: IMPOIt OPLIONS TOF TIVIX. ..t et e s aaaaaaaaaaasasasasasasasasasnnnnnnes 41
igure 36: Specifying file format for importing textfile. ... 42
igure 37: Selecting language for importing MICrOSOft gIOSSAIY..........uuuuveviiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e, 43
igure 38: Translation VIew In MUIIZEE. ... 45
Figure 39: Choosing visible columns in translation grid.ccooiiieiiiiiiiiicicccccccccccceeeeeeeeeeeeees 45
Figure 40: Options fOr fIlteriNg DY QAtA TYDE. ...ccuuuiiiiiiiiiiiee ittt e e et ee e e et s seseaaassasernssseennnsaeaes 46
F-igure 41: Options for filtering by translation SALUS.c.vvviiiiee i eeeeeeeeeseeeeeaaeeeanns 47
igure 42: Options for filtering by row status. ... 47
igure 43: Options for filtering strings by Do not translate -Status.uuveeeiecuvieiieeeesiciieeeeeeeceeeeean 48
Figure 44: Translation grid OPTIONS.uuuiiiieeiicciieiee e e e e scecit et eeesesstaeeeeeeeessansnteerraaeeesaassseeeeeaesssnnssnnnaeessnns 48
Figure 45: Visual editor for forms and dialogS.vueeeee et eee e e e e ee et eeeeeeeaaan 49
Figure 46: Visual editor for MenUS. ... 30
F-igure 47: Options for visual AIalog EUIOTS.i e aaaaaaaaeenees 50
igure 48: Translation grid with cells showing non-visible characters.cccoouuueviiiiiuiiiiiiieeiiiiiieiiieienns 51
IQUEE 49: ACCEIEIATOIS VIEBW. ...ttt ettt ettt e et eeeeeeaeaeaeaeaaaaaaaaaaaaaeaseaaaaaaaaaans 52
igure 50: LocaliziNg @n ACCEIBIALON.oiiii ittt e e et e e e e e e nbbbeeaaaaeaaanns 52
AT oY or (AT T T 0T o T= T 53
Figure 52: Translation Memory administration. ... 57|
Figure 53: Translation Memory; setting MatChiNg OPLIONS.uuccuii e e e e e eeeeeeaeeeseeeeeeeeeeeeeeas 58
igure 54: Adding properties of a new Multilizer Translation MeMOry. ... 59
igure 58: Translation Memory; geNEral SEHINGS.uuiueeiiieeieiieeeee e et e e e e e e et eeeaeeesaeneeeeeeeeeeeeeanneeeeeees 61

Figure 59: Translation Memory; IMpPorting Of OCUMENTS.cieeiiiiuriieiieeeeeissieieeieeeeeesssenierereeesssnnsnreeeeeeenes 61

Multilizer Localization Guide 177

Figure 60: Translation Memory; specifying block Words. ... 62
Figure 62: Translation Memory mainteNanCe tab.ooicuuiiiiiiiiiiiiiii e a e 63
Figure 63: Selecting validations t0 PEITOMM.ccociiie e eeeeeeeeneeenees 65
Figure 64: Displaying validation results. ... 67
Figure 65: Defining PSeudo Trans|ation PrOPEIIES.uuuuuueuueereieeieeereereeeeeeeee 68
Eigure B0 PrOJECE TEPIOIT. ..ttt ettt ettt ettt e ettt e e e e e s e e et e e e et e s e e e e s et e e e e e e e e b aasennneaebnnsnnns 71

IGUre 67: Validation rEPOI O IONS. ..cuiieeieeiee e ettt eeee et e e et e ettt eeeaeees et eeeeeeeeesaneeeeeeeeaeeesannneeeeees 72
Figure 68: Specifying Style SNEEL fOr FEPOITS.uueiiieeiieicieiiieie e e is ettt et e e e s eset e eaeeesasnnnterereaeessaasnnenereeeeesn 72
Figure 69: Binary 10CaliZAtiON PrOCESS.uuuiee i i eeieieeeee et e e e ettt eaeeeaeeteeeeeeeaessannneeeeeeeeeesaannneeeeeeeeeasns 76

Figure 70: Driving time calculator with English USer interface.uuuuuiiiiiiiiiiiiiiiiiiiiceeeeee e eeeeeeeeens 76
Figure 71 English Visual C++ WINAOWS CE APPlICATION.uuuururnririiiiiiiiiiiiiiiivieeeeveveveeeeeeeeeeeeeeeeeeeeeresesereseeees 77

igure 72: INSert RESOUICE HAIOT DOX.......iiiiueiiiiieiieiiee ettt ettt e e e et e e et aeesaeeaaesessennssasesnsaeesnnssases 78
igure 73: String Table editor. ... 78
igure 74: Replace dynamic items with dummy SEINGS.c.uuuiiiiiiiiiiiiiii e 83

Figure 75: Resize dynamic items for [ong translationS.coooeeeeieieieeeeeeeeeeeeeeeeeeececeeecccceeeeenees 84
Figure 76: Encoding options for target languages. ... 85
Figure 77. Output OPtIoNS fOr I0CALIZEM FIlES.uuuuuuririiiiiiiiiiiieiieiiitiiitieeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeereeeeeeeeeeeees 86
igure 78: The files of the binary C++ localization process in Windows. ... 86
igure 79: Font options for 10CalIZEA SOTWAIE.c..uveeeieece et e e e e e e e s eeeeeeeeeeas 87
Figure 80: Specifying the resources types t0 l0CalIZE.oveeiiiiciiiiiiie e a e e 88
Figure 81: Specifying the platform of l0calized SOfWAIE.cceeeiieceiiiiiie i eaaaee e 89
Figure 82: Localizing fOrMS VISUBIIY.ooiiiiuiiiiiiiiiiiiiie e 90
Figure 83: Localized Dcalc application (WINAOWS).ccoeeieieieiiieiii et eeeeeeeeeeeeeeeiaievevevevevereeerenes 91
igure 84: Localized Dcalc application (Windows CE).............ocos 91
igure 85: Binary localization process of a VCL appliCation.ccouuuiiiiiiiiiiiiiiiaiieieeeeeeeeeeeeeeeeeeeeeen 92
igure 86: Dcalc application using an English user Interface...............ccooccciiiiiiiiiiiiiiiic e, 93
Figure 87: Message displayed when time is 1€SS than 1 NOUK...............uuuuuuiuiuiiiiiiieiiiiiiieiiinieininineneeineneneneeens 101
Figure 88: Message displayed When tiMe IS L NOUN.cc.u.iiiiiuuiiiiiieiieie et e st ee s e e e 101
-Figure 89: Message displayed when time is more than L NOU.uuuuuuuuuuuuiinneinininininininininenenenenenenenees 101
_Egure 90: The internationalized Dcalc form on Delphi IDE. ... OSSP PP PSPPI PTPPPPPTO 102
igure 91: The internationalized Dcalc application running with Finnish locale.ccccccovvecveccrnnnnn.... 103
Figure 92: Delphi-specific settings for VCL bINary target.cccuvvuiiiieeiiiiiiiiiieie e cesiiieeae e e snsnieeeaaaee s 105
Figure 93: Message box telling that there are existing ITE translations.cccuuuvveeiiccciiiiieeiseciienaaanns 105
Figure 94: Delphitarget OptioNS. L. 106
-F-igure 95: ENCOdINGS fOr target lANQUAOES.uvueeeeeeeeeeieieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesessesseseeeeeeeeeeeesees 107
igure 96: Output options for localized Delphisoftware. ... 108
igure 97: The files of the binary localization process of a VCL applicationcccccccceeeeeeeiieeeeccccccnnnnns 108
igure 98: Font options for localized SOMWAIE.ccuuuiiiiiiiiiiiiiii et 109
Figure 99: IME options for software localized to Far Eastern languages.eeueveenennnnnnnnnnnnnnnnnnnnnnnns 110
Figure 100: Specifying the resources to be localized. ... 111
Figure 101: Localizing Delphi forms visually In MURIIZEY.ccuvuuiiiiiiiieciiie e 112
igure 102: Localizing MENUS VISUAIY.uuuniiiiiiiiiiieei et e e e e e e e e e aeeaeeseeeennnnnas 112
igure 103: RUNNING 10CAlIZEA SOMWAIE.ueiiieeeiieeeeee et e et ee e e e e e e et eeeeeeeaeannneees 113
Figure 104: Excluding properties by components in VCL binary localization..................ccccccevveevicciinnneenns 114
Figure 105: Excluding properties by name in VCL binary localization.ccccuuueeeiiiccciininaaieeciennaann. 114
Figure 106: Visual form editor with an unknown VCL component. ... 115]
igure 107: Specifying visual representation for VCL CONEIOL.coevviiiiiiiiiiiiiiiiaiiiecicee e 115
igure 108: Visual Editor recognizing all VCL CONIOIS.iiiiuueiiiiiiiiiiiiiieeeeee ettt ee e e 116
igure 109: Visual Studio .NET file NIerarChy.........ccccccccuuuiiiiiiiiie e 118
igure 110: Visual Studio .NET project file localization proCess.coocuuuiiiiiiiiiiiiiiiiiiaiiiiiiiiiaae e 119
Figure 111: The files of the Visual Studio .NET project file localization proCess.cccceeeeeeeccnrnnnnnnnnnnns 119
Figure 112: Borland Delphi 8/C#Builder file hierarChy.couooiiiiuuiiiiiiiiiiiiiiiiiiiieeiiiieee e 120
Figure 113: .NET resource file 10CalIZatiOn PrOCESS.uuuuiieeeieiieeiieeeeeeeeeeeeeeeeeetteeeeeaeesaaneteeeeaaeseaaeeeeees 121
Eigure 114: The files of the .NET resource file localization process. ... 121
igure 115; Dcalc application using an English user INterface.ccccoecuvuuuieeeieecciiiee e eeeeeee 122
Figure 116: To localize the form set the Localizable property to true.cccccoccvvvveieeeiiciiiiieeeessiieeeeeenn 122
Figure 117: Resource file after adding the fIrSt IIEM.........uucui it e e eeeeeeaeeas 123
Figure 118: ENcodings fOr |0CAlIZEA SOfWATIE.oivuueiiiisiiiee ettt e et s e e e e e e e seaesssennnsaas 129
Eigure 119: .NET LOCAlIZAION OPUONS......eviiiiiiiiiieeeieeeeeeeeeeeeeeeee e e eeeeeeeeeeeeaeaeaeaeaeaeaeaaaaaaaaasaaaaaaaaaaeaaaeaaaaaaaeas 130
Figure 120: Font options for localized .NET SOFIWAIE.oiiiuuuiiiiiiiiiiieiiiieeeeeeeee et eeeseeeeaeeaaaas 131

Multilizer Localization Guide 178

éigure 121. IME options for software localized to Far Eastern languages.ccccccceeeveeeeecececciiiccicaaann. 132
igure 122: Output optionNs fOr NET SOTIWAIE.oouuuiiiiiiiiiii ittt e e e eeaae e 133
Figure 123: Localizing forms of .NET SOftWare VISUAIIY.............uuuuuununnnniieeeeeeeeeeeeeeeeeeeeeeeeee e 134
Figure 124: Localizing menus of .NET software visually. ... 135
Figure 125: Localized .NET SOfWANE.cccccceeeieieiiiiieeeeeeeeeeeee e 136
Eigure 126: Specifying of .NET tools.ccccccevvunnnn... B PP PP P P PT PP PP PP PP PO U PP POPPPOUPTPPO 136
igure 127: Excluding properties by components in .NET localization.cccccouvccuvveeeeeesscciiiiaeeseeeeen 137
Figure 128: Excluding properties by name in VCL binary localization.ccccccceeviieciiieiieeciecciiieeae, 138
Figure 129: Visual form editor with unknown .NET CONEIOIS.cccciiecuuiiiiiieiieeceeee e eeeeeeaaaas 138
Figure 130: Specifying visual representation for NET control. ... 139
igure 131: Visual Editor recognizing all NET CONtIOIS.cccoeveiiiiiiiiiiiiiiiiieeee e 139
Figure 132 Java localization process with resource bundles................cccccccoiiiiiiiiiiiiiii, 141
igure 133 The files of the Java localization process with property resource bundles..................... 141
igure 154 JBUIAEN RESOUICE WIZAITceuietieeeeeeeieete e e et e e et e et e e et e e e e e eaeaeaseeaeaenaaenaeeneeenns 142
~Figure 135 INternationaiization WIZard OF METBEAND TDE. ..o oo, 147
Figure 136: ENcodings fOr |0CAlIZEA SOTWATIE.coiieeeiiiieiiiee ettt e e et s e e e e e s seaasssennnsaas 144
Figure 137: Output optioNs fOr Java SOWAIE.ccccvviiiiiiiiiiiiiee e eeeeea 145
_Egure 138: EXcluded fileS fOr JAVA SOMWAIE.uuu.iiiiiiieeeeeee e e e s e e et s e e e e e s e reeebansaeeaeees 146
igure 139: LOCAlIZEA JAVA SOTIWAKIE. ...ttt e e e e e et eeeeeaeesaaenneeeeeeeeeeesreees 147
Figure 140: Specifying Java Virtual Maching l0CAtION.c.eeiiiiiuiiiiirieesisiciiiieeeeeesssieteeeeeseeesnnenreeeeeeeeeas 147
| Figure 141 J2ME 10CaliZation PrOCESSviiiiitiit ittt 149
| Figure 142 The Tiles of the JZME T0CalIZATION PrOCESS.......ueecceevreeeiiiseesiiirssesiirseessirenessisrsesssiineesnees 150
| Figure 143 J2ME application with an English Ul............coooviiiiiiiv 150
| Figure 1447 Encodings forTocalized Software. ... 153]
igure 145: Output options fOr Java SOftWAIE.cccceiiieieieicicecc e 154
igure 146: Localized Java SOMWAIE.coiiiiiiiiiiiiiiii ettt e et e e e e e e e s aanbbeeeaeaeeesreees 155
Figure 147 SPeCifying J2ME OPTONS. ...uuuuuuuetteiiieitiiitieiiiiiiiiiiteete e e e e e aaas 156
Figure 148: ENCOOINGS Of QATADASE. ..couvuniiiiiiiiieee ettt e e et s e e e e e e s et aaeesennsnaas 159
[FIQUIE 149 LOCAIZADIE TIEIAS. ..ovovooroereroereerereereerereeeerereereerereereeseeeeesereeeseereeereereerereereereeereerereereerereereerees 160
Eigure 150: Database ClONING SEIHNGS.covveuuueeiiiiiiieeeiiee e e e eee e e s e eeeeeeeetaeaesseeseeeeesnnnsseeseseresnrnnnsaseeeees 161
igure 151:; Localization view for translating database CONteNtS............cc..uuuvveeeieicciiiiiieeeiiecieeeee e 162
Figure 152: XML-0PtIONS IN PrOJECE WIZAIU.evieeeeiiiiiiiieiieeeeeieeiiieeeaeeessseaaeeeeeeeeesssnnteneeseeeesnannnsnnneeeees 164
Figure 153: Defining an element containing C# SOUICE COUE.uuuiiiiieeeiiiiieeeeeeeieeeeeeeeeeeeeeeeeeeesnieeenaaeeas 164
Figure 154: Localization of strings in C# source code embedded in XML ... 165
-F-igure 155: Localization view for translating SoOUrce COde. ... 168

igure 157: INI-file target; keys marked for localization. ... 171
igure 158: Key-file target; defining key file format.ccccoiiiuiiiiiiiiiii e 171

iiqure 156: Selecting INI-file keys for translation. ... 170

Multilizer Localization Guide 179

Glossary

Accelerator resource

Accelerator resources include key combinations used as shortcuts in application. MULTILIZER
extracts accelerator resources from executables, and allows localization of them.

Bitmap resource

Bitmap resource includes an image. MULTILIZER extracts bitmap resources from executables, and
allows localization of them.

Cursor resource

Cursor resource includes application-specific cursors. MULTILIZER extracts cursors from
executables, and allows localization of them. Cursors are bitmaps, so the localization is done with
visual editor.

Icon resource

Icon resource includes application-specific icons. MULTILIZER extracts icons from executables, and
allows localization of them. Icons are bitmaps, so the localization is done with visual editor.

Localization Kit

Localization Kit is a compressed file created with Exchange Wizard. It contains in a minimum a
It can also include MULTILIZER Translator Edition and any user-specified files. If
Localization Kit includes MULTILIZER Translator Edition, it is a self-installing executable; when
executing it, it installs and runs MULTILIZER Translator Edition and opens the sub-project. If
MULTILIZER Translator Edition is not included, the Localization Kit is a compressed MULTILIZER
package file (MLP) that can be opened in any MULTILIZER Edition| in order to extract the contents
of it.

MULTILIZER Edition(s)
MULTILIZER Editions are different MULTILIZER products that can be purchased separately (Note:
MULTILIZER Translator Edition is free, and included in Localization Kit). MULTILIZER Editions differ
in the role in a localization process, and in support for different platforms.

Project
A MULTILIZER project must be created in order to localized any software/content. MULTILIZER

project keeps all the information required for localizing software/content. It contains 1...N
along with associated data. In addition MULTILIZER project keeps information of target languages

and general project_information. MULTILIZER project can be created with following MULTILIZER
MULTILIZER Enterprise, MULTILIZER for Oracle, MULTILIZER for Windows, MULTILIZER

for .NET, MULTILIZER for VCL, and MULTILIZER for Java.
Project Tree

Project tree is the tree-structure shown at left-hand side_of MULTILIZER application's
Project View

The main view of MULTILIZER is called_Project View. It is shown upon opening a MULTILIZER
or creating a new one.

Resources

Multilizer Localization Guide 180

Resources is data that is kept separate from program code. Resources can contain localizable data,
such as string tables to translate. MULTILIZER is able to detect localizable resource types from
within Windows executables and add them in MULTILIZER project. Some resource types support

Sub-project

Sub-project is a MULTILIZER project that is created with Exchange Wizard. Sub-project contains a
sub-set of MULTILIZER project's languages, and sub-set of the targets. In addition translations may
be filtered out with Exchange Wizard. Sub-projects are maintained normally only for translation. After
translation, sub-project is imported in MULTILIZER project using Import Wizard.

Target

Target (MULTILIZER Localization Target) is a file/database that is supported and localized in
MULTILIZER . A target can be a software project file, software executable (EXE, DLL, etc.), single
source file, database, etc. MULTILIZER project targets are shown as root-nodes in Eroiect Tree] For
each target you can specify native language (source language).

Target language

Target language is the language(s) into which the software/content is localized. Target language
should not be mixed with

Translation_Work-place

Translation work-place is the part of MULTILIZER application where translations are edited. It shows
strings to translate and accompanying info, such_as resources shown in

Wysiwyg

Wysiwyg (What you see is what you get) stands for the Ul editors that allow users modify size and
position of dialog form resources, edit bitmap resources, and menu resources visually.

Multilizer Localization Guide

181

Supported file types

NOTE!

This appendix shows the file types with native support in Multilizer.

Different file types can have the same file extension. In order to localize the file properly,
user has to know the file type. In order to simplify this, Multilizer attempts to auto-detect

> p. [L4) the format.

Following list shows the file types with referral to starting page of the tutorial(s) that
discuss the localization of it.

File extension

bas
bdsgroup
bdsproj
bpl

bpl

c

cpp

cs
csdproj
CSproj
dil

dlil

dil

dil

dil

ebp
exe
exe
exe
exe
exe

h

hpp

ini

jar
java
java
ot

JpX

ocxX
ocX
ocX
pas
properties
rc

rc2
resx
shl

sln

txt

txt

vb
vbdproj
vbp
vbproj
Vjsproj

File type

[Visual] Basic source code file

C#Builder and Delphi 8 project group file

C#Builder and Delphi 8 project file
C++Builder binary file

Delphi binary file

Source code file

Source code file

Source code file

Visual Studio .NET project file
Visual Studio .NET project file
.NET assembly file

C++Builder binary file

Delphi binary file

Visual Basic binary file
Windows binary file

Embedded Visual Basic project file
.NET assembly file

C++Builder binary file

Delphi binary file

Visual Basic binary file
Windows binary file

Source code file

Source code file

Ini-file

Java archive file

Java resource file

Java source code file

JBuilder project file

JBuilder project file
C++Builder binary file

Delphi binary file

Windows binary file

[Object] Pascal source code file
Java resource file

Windows resource file
Windows resource file

.NET resource file

InstallShield string table file
Visual Studio .NET solution file
.NET resource file

Key file

Visual Basic [.NET] Source code file
Visual Studio .NET project file
Visual Basic project file

Visual Studio .NET project file
Visual Studio .NET project file

Tutorial page

67
17
17
2]
52
167
67|
167
17
17
17
52

52

117
D2
P2

75|

167]
167
169

167

75)
75
117
169
117
117
169
167
117

117
117

Multilizer Localization Guide 182

xml XML file

[o)]
w

Multilizer Localization Guide

183

Localization Walkthrough Quick Reference

The Multilizer localization process is extremely straight-forward; as its simplest entire
localization process is carried out in four short steps.

Create project

Prepare project for
translation

Share translation
work & translate!

Create localized
files

To do:

(0]
(0]

Run Project Wizard.
Specify the software you wish to localize.

0 Specify target languages.
> Ereate Project]p. L1

0

[0}
[0}

eate Project|p.
To do:

Remove strings that shouldn't be
localized at all.

Lock strings that shouldn’t be translated.
Use Translation Memory for pre-
translation of project.

> [Translate using Translation Memory] p.

To do:

(0]

[0}
[0}
[0}

Create a Localization Kit, and send it to
translator.

Translate the strings.

Modify dialog layouts in WYSIWYG.
After translation, use Import Wizard to
import translators.

> Ehare translation workl p.

To do:

(0]

(0]

Use Validation Wizard to check that
everything is all right.
Click “build” to create localized files.

- Build localized versions] p.

	Introduction
	Use of this manual
	Multilizer products
	Installation
	Useful links
	Multilizer Support and Maintenance

	Part I: Multilizer localization process
	Create Project
	Multilizer project, MPR
	Arranging the files to localize
	Project Wizard
	Target type
	File Target
	Select file type

	File type
	Target options
	Information
	Languages
	Finish

	Project maintenance
	Introduction
	Project View
	Project tree
	Modifying targets

	Translation work-place
	Info page
	Log
	Validation Log

	Re-scan project
	Categories

	Pre-translate project
	Translate using Translation Memory
	Import translations from files and databases

	Prepare project for translation
	Filtering
	Pseudo languages (QA
	Lock Visual Editors
	Translation control

	Share translation work
	Introduction
	Default workflow

	Exchange Wizard
	Creating Localization Kit
	Exchange Wizard steps
	Languages Sheet
	Options
	Information
	Application
	Include Files
	File
	Package File

	Export Wizard
	Export Wizard steps
	File
	Translation Memory Exchange file (TMX)
	Text file (TXT)
	Options

	Import Wizard
	Import Multilizer Project (MPR)
	Import from other formats
	Import Wizard steps
	File import
	Import Options

	Options for typical file imports
	Multilizer Project (MPR)
	Translation Memory Exchange file (TMX)
	Text file (TXT)
	Comma Separated Values file (CSV)
	Multilizer Dictionary File

	Translate
	Restrictions
	Translation work-place
	Selecting visible columns
	Row filtering
	Data type filter
	Translation status filter
	Row status filter
	Other filters

	Translation grid options
	Visual Editors, Wysiwyg
	Visual Editor (Wysiwyg) settings
	Options
	Grid

	Localization of strings
	Localization of accelerators
	Localization of images
	Localization of AVI and other custom resources
	Software translation specifics
	Characters with a special purpose
	Maximum length of translations

	Translation Memory maintenance
	Sending back translations

	Translation Memory
	Introduction
	Ensuring the Translation Memory quality
	Using Translation Memory
	Finding Translations

	Installation of Multilizer Translation Memory
	Create Local Translation Memory
	Create Server Translation Memory

	Store translations
	Save project translations
	Import documents
	Segmentation
	Block words

	Maintenance

	Quality assurance
	Validation Wizard
	Validation types
	Working with validation results
	Quick fix
	Navigation
	Change translation status

	Pseudo Languages
	Cover
	Minimum
	Pseudo language

	Informative QA features
	Cell coloring
	Display of non-printing characters
	Statistics panel
	Control boundary colors

	Translation Status
	Set status automatically
	Set status manually

	Reports
	Project reports
	Validation reports
	Modifying reports

	Build localized versions
	How does build work

	Windows Tutorial
	Introduction
	Open Tutorial Application
	Internationalization
	Create Multilizer Project
	Specify Localization options
	Encodings
	Output
	Fonts
	Resources
	Platform

	Translate Project
	Wysiwyg
	More info

	Build Localized Versions

	VCL Tutorial
	Introduction
	Open Tutorial Application
	Internationalization
	Run-time language switch
	Enable DRC generation in Delphi

	Create Multilizer Project
	Delphi-specific settings
	Integrated Translation Environment

	Specify Localization options
	Project
	Encodings
	Output
	Fonts
	IME
	Resources

	Translate Project
	Wysiwyg
	More info

	Build Localized Versions
	Excluding Properties from localization
	Exclude properties by components
	Exclude properties by name

	Visual Representation

	.NET Tutorial
	Introduction
	Localization of Visual Studio .NET software
	Localization of Visual Studio .NET solutions
	Localization of Visual Studio .NET projects

	Localization of Delphi 8 / C#Builder software
	Localization of Delphi 8 / C#Builder project groups
	Localization of Delphi 8 and C#Builder projects

	Localization of .NET resources
	Open Tutorial Application
	Internationalization
	Internationalization of forms
	Internationalization of code
	Hard-coded strings
	Format strings
	Culture-specific issues
	Determine startup language at command-line

	Miscellaneous
	Add icon
	Unicode

	Create Multilizer Project
	Specify Localization options
	Encodings
	Project
	Fonts
	IME
	Output

	Translate Project
	Wysiwyg
	More info

	Build Localized Versions
	Specify .NET tools location
	Excluding Properties from localization
	Exclude properties by components
	Exclude properties by name

	Visual Representation

	Java Tutorial
	Introduction
	Localization of Resource Bundles
	Internationalization
	JBuilder Resource Wizard
	NetBeans IDE 3.5.1
	Manual internationalization

	Create Multilizer Project
	Specify Localization options
	Encodings (all Java targets)
	Output (all Java targets)
	Exclude files (JBuilder targets)

	Translate Project
	More info

	Build Localized Versions
	Specify Java tools location

	J2ME Tutorial
	Introduction
	Localization of Resource Bundles
	Application with an English User Interface
	Internationalization
	Use property files
	Add strings to property files
	Use format function
	Load strings from property files
	Conclusions

	Create Multilizer Project
	Specify Localization options
	Encodings
	Output

	Translate Project
	More info

	Build Localized Versions
	Configure J2ME options

	Database Tutorial
	Introduction
	Localization of databases
	Database cloning

	Create Multilizer Project
	Database cloning settings
	Address
	Database
	Parameters
	Tables and Fields.

	More info

	Specify Localization options
	Encodings
	Fields
	Settings

	Translate Project
	Translation view
	More info

	Build Localized Versions

	XML Tutorial
	Introduction
	Localization of XML
	Create Multilizer Project
	Source code embedded in XML

	Translate Project
	Translation of embedded source code
	Localization of bitmaps
	More info

	Build Localized Versions

	Source Localization Tutorial
	Introduction
	Localization of source codes
	Create Multilizer Project
	Translate Project
	More info

	Build Localized Versions

	Data File Localization Tutorial
	Introduction
	Localization of data files
	Create Multilizer Project
	Ini/shl file specifics

	Translate Project
	INI/SHL file properties
	Key file properties
	More info

	Build Localized Versions

	Part III: Appendices

