

Multilizer Localization Guide

Multilizer® 6.0 Localization Guide

February 2004

Copyright © 2004 Multilizer Inc. All rights reserved.

Multilizer is a registered trademark of Multilizer Inc. All other trademarks and registered
trademarks are the property of their respective owners.

Table of Contents

Introduction

Use of this manual ...7

Multilizer products ..7

Installation..8

Useful links...8

Multilizer Support and Maintenance...9

Part I – Multilizer localization process
Create Project...11

Multilizer project, MPR ...11

Arranging the files to localize ...11

Project Wizard..12
Target type ...12
File Target ..13
File type ..14
Target options ..15
Information..15
Languages..16
Finish ..17

Project maintenance...18

Introduction ..18

Project View ...18
Project tree ...19
Translation work-place ...22
Info page...23

Re-scan project ..25
Categories ..25

Pre-translate project...25
Translate using Translation Memory..25
Import translations from files and databases ...26

Prepare project for translation..26
Filtering...26
Pseudo languages ! QA...26
Lock Visual Editors...26

Translation control..26
Share translation work..27

Introduction ..27
Default workflow ...27

Exchange Wizard...28
Creating Localization Kit...28
Exchange Wizard steps..29

Export Wizard ..33
Export Wizard steps ...33

Import Wizard...37
Import Multilizer Project (MPR) ..37
Import from other formats...38
Import Wizard steps ...38
Options for typical file imports ..40

Translate ..44

Restrictions ..44

Translation work-place ...44
Selecting visible columns ...45
Row filtering..46
Translation grid options ..48
Visual Editors, Wysiwyg ...49
Visual Editor (Wysiwyg) settings ..50

Localization of strings...51

Localization of accelerators..51

Localization of images..52

Localization of AVI and other custom resources53

Software translation specifics...53
Characters with a special purpose ...54
Maximum length of translations..54

Translation Memory maintenance..55

Sending back translations ..55

Translation Memory..56

Introduction ..56
Ensuring the Translation Memory quality...56
Using Translation Memory ...56
Finding Translations ...58

Installation of Multilizer Translation Memory58

Create Local Translation Memory ..59
Create Server Translation Memory ..59

Store translations ...60
Save project translations ..60
Import documents...61
Segmentation ...62
Block words ..62

Maintenance ..62

Quality assurance...64

Validation Wizard ...64
Validation types ..65
Working with validation results ...66

Pseudo Languages ..68
Cover ..68
Minimum...68
Pseudo language ...68

Informative QA features ...68
Cell coloring..69
Display of non-printing characters..69
Statistics panel ...69
Control boundary colors ...69

Translation Status ..69
Set status automatically ...70
Set status manually ..70

Reports ..71
Project reports ..71
Validation reports ...71
Modifying reports..72

Build localized versions ..73

How does build work ..73

Part II – Tutorials
Windows Tutorial ..75

VCL Tutorial ...92

.NET Tutorial ..117

Java Tutorial ...140

J2ME Tutorial ...148

Database Tutorial ...157

XML Tutorial ...163

Source Localization Tutorial ...167

Data File Localization Tutorial ..169

Part III – Appendices
Index...174

Table of figures...176

Glossary ...179

Supported file types..181

Localization Walkthrough Quick Reference..183

Multilizer Localization Guide 7

1
Introduction

Use of this manual
Multilizer 6.0 Localization Guide covers the entire Multilizer localization process. It serves
as reference for localization engineers, project coordinators, and software engineers, and
others using Multilizer for software and content localization.

The translators’ tasks are covered in the chapter “Translate,” p. 44.

Multilizer products
The manual covers all Multilizer 6.0 products:

• Multilizer Enterprise
• Multilizer for Windows
• Multilizer for .NET
• Multilizer for Visual C++
• Multilizer for VCL
• Multilizer for Java
• Multilizer Translator Edition Pro
• Multilizer Translator Edition

The abovementioned Multilizer editions have all the same basic set of features, including
a uniform way of working and user interface.

Multilizer products differ in two aspects:

• Support for Process features.
There are different Multilizer editions depending on the major tasks in the localization
process. For example, the translator uses Multilizer Translator Edition and the QA
person uses Multilizer Translator Edition Pro.

The Multilizer localization process forms Part I of this manual.

• Supported software platforms and contents.
There are different Multilizer editions with different support for platforms. For
example, .NET software can be localized with Multilizer for .NET; and if database
localization is also needed, then Multilizer for Windows or Multilizer Enterprise is
required.

Software platform and content-specific tutorials form Part II of this manual.

The following table summarizes the differentiating features:

Multilizer Localization Guide 8

M
ult

iliz
er

 E
nt

er
pr

ise

M
ult

iliz
er

 fo
r W

ind
ow

s

M
ult

iliz
er

 fo
r .

NE
T

M
ult

iliz
er

 fo
r V

isu
al

C+
+

M
ult

iliz
er

 fo
r V

CL
M

ult
iliz

er
 fo

r J
av

a

M
ult

iliz
er

 T
ra

ns
lat

or
 E

di
tio

n
Pr

o

M
ult

iliz
er

 T
ra

ns
lat

or
 E

di
tio

n

Process features
Create Multilizer localization project """" """" """" """" """" """"
Scan software/content to include localizable
data in Multilizer project """" """" """" """" """" """"
Translate Multilizer localization project """" """" """" """" """" """" """" """"
Build localized versions """" """" """" """" """" """" """"
Create localization kits """" """" """" """" """" """"
Multilizer TM installs on database server """"

Multilizer TM installs on desktop database """" """"
Built-in single-user TM database """" """" """" """" """" """" """" """"

.NET """" """" """"
Windows """" """" """" """"
Windows CE """" """"
Java """" """" """"
Desktop databases """" """"
Server databases """"
Data files """" """" """" """" """" """"

Supported software platforms and contents

Process features

Process feature differences are explained in depth in Part I of this manual.

More specific info on supported software platforms and contents is available in the
tutorials in Part II of this manual.

See appendix ‘Support file types’ for a comprehensive list of supported file formats.

Installation
Multilizer is installed either from CD or directly from the Internet. Refer to the instructions
of installation software for details.

On installing the commercial version of Multilizer, remember to enter the serial number
during installation.

Useful links
The Multilizer website offers useful services both for evaluation version users as well as
users of the commercial version.

Multilizer Localization Guide 9

http://www.multilizer.com/download

Full setups, patches, and
updates of all Multilizer
products.

http://www.multilizer.com/support

Support pages. Check out latest
technical news and notifications
of Multilizer products.

Customers can register
Multilizer product here, in order
to get extra services on
Multilizer support pages.

http://www.multilizer.com/support/documents In documents, you can find links
to software localization-related
documents, Multilizer fact
sheets, in-depth articles of
Multilizer technology, etc.

Multilizer Support and Maintenance
Multilizer users can subscribe to Multilizer Support and Maintenance Agreement (SUMA).
SUMA includes free upgrades and support.

There is always a separately agreed amount of free consulting included in SUMA. This
consulting is highly recommended for companies that want to achieve all benefits that
Multilizer technology can bring in their particular cases.

For more info, please contact Multilizer sales: sales@multilizer.com.

http://www.multilizer.com/download
http://www.multilizer.com/support
http://www.multilizer.com/support/documents
mailto:sales@multilizer.com

Multilizer Localization Guide 10

Part I: Multilizer localization process

This part goes through the typical tasks of the Multilizer localization process.

Each chapter in this part starts with a short description of:

• Multilizer editions that support the specific task.

• Multilizer user’s role in the task.

• Wizards that guide the user.

Multilizer Localization Guide 11

2
Create Project

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

User’s role in process: Localization engineer, Localization project
coordinator, Software developer

Wizards: Project Wizard

Multilizer project, MPR
Before anything can be localized with Multilizer, a Multilizer Project (MPR) must be
created. Thus, the first task in localizing software is to create it.

Each Multilizer project can contain 1...N localization targets. Each target contains 1…N
files; a target can be software executable, a .NET solution, a directory with property files,
or database, just to name a few.

Multilizer project keeps all information needed in localization, such as list of targets along
with native (source) language. In addition, target languages are included.

The core idea of working with the Multilizer project is to maintain always the same project
file; therefore the project should be created only once. In order to keep the Multilizer
project and targets synchronized, you can force Multilizer to scan targets; this is called re-
scanning (! Re-scan project, p. 25). Re-scan checks if there are any changes in targets;
any changes are flagged in the project so that the user easily sees the changes.

Arranging the files to localize
Because scanning targets involves synchronizing files to localize with the project file, you
should arrange the files to localize so that they are always located in the same folder.
Access to the folder must be granted to enable the following Multilizer tasks: create
project, scan project (!Re-scan project, p. 25), and build localized files (!Build localized
versions, p. 73).

Other tasks operate the Multilizer project only.

Localized files are created in folders below the original files. The name of the folder is the
same as the locale ID. If the localized file is multilingual (e.g., multilingual EXE), it is put in
the folder called 'all.'

Multilizer Localization Guide 12

The following picture illustrates the files and folders created for a sample ‘notepad.exe’
localization project. In this example, there is only one target (notepad.exe) and by default,
Multilizer creates the project (notepad.mpr) in the same folder.

c:

My project

all

en

fr

Notepad.exe

Notepad.mpr

Notepad.exe

Notepad.exe

Notepad.exe

Files and folders created
by Multilizer with ’build’
command.

Original non-localized file
Multilizer project

Figure 1: Organizing the files to localize.

Upon building localized versions, Multilizer creates ‘all,’ ‘en,’ and ‘fr’ folders with localized
copies of notepad.exe. In this example, Notepad.exe is localized to a multilingual version
(in ‘all’ folder), an English version, and a French version.

Project Wizard
Project Wizard guides the user in creating a new project, in order to ensure that required
information is included in the project.

The screenshots in this chapter are taken from a simple Windows software localization
project. To know correct settings for a specific platform or database, check out the
respective tutorials.

Target type

The first screen prompts the user to choose between file and database localization. You
should choose ‘Localize a file’ if you localize any software or content files, such as XML
or INI-files.

Multilizer Localization Guide 13

Figure 2: Selection between localizing file and localizing databases.

Regardless of what you choose as the target type, you can always add different targets
afterwards. Upon finishing Project Wizard, you can choose Project!!!!Targets… to see
and maintain a list of targets.

File Target

The next screen asks you to specify the file(s) to add in the project.

Figure 3: Specifying files to be included in project.

Multilizer Localization Guide 14

If you select multiple files, we recommend that all files are of the same platform type and
target type. You can ensure this by selecting type of files from the combo box.

You can add different platforms and target types later to the project. This is done either
directly in project tree, or from Targets dialog (Project!Targets…).

Select file type

If you localize software/content of a specific platform, select ‘Select file types…’ from
combo box. It activates a dialog that allows user to choose platform and file type.

Figure 4: Specifying file type.

File type

If file type was not defined on previous page, certain files require specifying it on this
page.

This page is not shown, if file type was already specified or selected file can be localized
in only one way.

This is the case with Windows executables for instance; an executable is localized
differently, depending on the type. This is due to the fact that for example Delphi binary
file differs from standard Windows binary file.

Selecting file type ensures that localization is performed correctly on selected file.

Multilizer Localization Guide 15

Figure 5: Specifying file type.

Target options

Depending on the selected target platform and type, the next screen allows the user to
specify localization-dependent options for the target.

The available options for each target platform and type are discussed in the tutorials
(See: Target Options in each tutorial).

Information

The next screen lets you enter information that identifies the project.

Multilizer Localization Guide 16

Figure 6: Specifying project information for new project.

Languages

On the next screen, you have to specify target languages for the project.

Figure 7: Selecting languages for project.

Drag and drop desired languages to the right-hand side to select them.

It is preferred to add languages instead of sublanguages (language + country).
Sublanguages should be added only if there are country-dependent translations for the
target language.

Multilizer Localization Guide 17

You can add default languages for new projects. Choose
Tools!!!!Options!!!!Environment!!!!Default languages… from the Multilizer main menu to
specify languages that should be automatically selected in new projects.

If there are languages that are not included in the list, you should continue and finish the
project. Then add custom languages (Tools!Languages and Locales…). After defining
custom languages, you can add them in your project (Project!Languages…).

Finish

The last screen lets you go back and modify settings.

Finish button will create the Multilizer project, and scan the files to localize. Scanning will
pick the data to localize from the files to localize and store them in the Multilizer project.

Multilizer Localization Guide 18

3
Project maintenance

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

User’s role in process: Localization engineer, Localization project
coordinator

Wizards: Scan project
Translation Memory

Introduction
There are three main tasks to do in maintaining the Multilizer project:

• Check if software/content to localize has changed; if it has, synchronize it with the
project. (!Re-scan project, p. 25)

• Pre-translate project (! p. 25)
• Prepare the project for translation. (! p. 26)

Project View
When a Multilizer project is created or an existing project is opened, Multilizer shows it in
Project View. All project maintenance tasks are done within Project View.

Project View consists of project tree, translation work-place, and Info page.

Multilizer Localization Guide 19

Figure 8: Multilizer project view, with project tree, translation work-place (translation grid and
visual editor), and info page.

Project Maintenance tasks are done on three levels:

• Project level
Project maintenance is done from Project menu.

• Target level
Target level maintenance affects the way of localizing individual targets, such as
output of localized files. Maintenance of targets is done either in Project Tree or by
choosing Project!Targets… from the main menu (! Project tree, p. 19). Further
platform-dependent options that may affect localization of targets are found in
Tools!!!!Options in the respective platform settings.

• Translation level
Translation level maintenance is done in Translation work-place. Besides editing
translations, strings can be locked, hidden, and much more. (! Translation work-
place, p. 22)

Project tree

All targets of the project are shown below the root node (‘all’) of the project tree.

Translations of each target are grouped by resource type, file name, or other way,
depending on the target platform and type. These groups are shown as nodes below
each target.

New nodes are shown in bold. Nodes that were removed from software are shown in
blue. (! Re-scan project, p. 25).

Multilizer Localization Guide 20

Figure 9: Project tree with mainform resource shown in bold.

By clicking any node, the translation view is automatically updated so that the
corresponding content is shown in the translation grid.

By clicking nodes of a certain resource type, Multilizer shows both the translation grid and
a WYSIWYG (what you see is what you get) view of the resource. Resources that are
shown in WYSIWYG are:

• Dialog (form) resources
• Bitmap resources, including cursors and icons
• Menus
• Frames (VCL, Delphi & C++Builder)

In addition, Multilizer shows in Wysiwyg the following file types:

• XML
• Source code
• Bitmaps and source code embedded in XML.

Modifying targets

Targets can be modified, added, and removed from project tree. This is done either from
a pop-up menu (right-click project tree to show) in project tree or from Project menu
(Project!Targets…) in the menu bar.

Multilizer Localization Guide 21

Figure 10: Dialog displaying project targets (Project!Targets...)

• Choosing Add… will add a new target using the Project Wizard (c.f. Project Wizard,
p. 12).

• Choosing New… will add a new target by allowing the user to select target type from
the list (! See next picture) and specify the location of it.

• Choosing Edit… will show target-specific localization options. The settings of these
are platform- and type-dependent, and they are discussed in the tutorials.

• Choosing Remove… will remove the target from the project. All strings associated to
it will be in the project until you explicitly remove them by choosing
Project!!!!Remove Unused Strings.

Multilizer Localization Guide 22

Figure 11: Adding new target by file type.

Translation work-place

Translation work-place shows the localizable information associated to the selected node
in the project tree.

Multilizer Localization Guide 23

Figure 12: Translation Workplace; translation grid and visual editor.

Translation work-place shows a translation grid for editing properties of localizable data
for translating. If a specific resource type is selected in project tree, Multilizer also shows
them in WYSIWYG (! Glossary, p. 176) mode above the translation grid.

Translation grid can contain one or more target languages; language visibility is toggled
from View menu. One language at time can be edited; this active language can be set
either from toolbar’s language drop-down list, or from View!!!!Edit language… menu.

Translation work-place is introduced in detail in the chapter ‘Translation work-place,’ p.
44.

Info page

Info page shows log information of processing the Multilizer project.

Multilizer Localization Guide 24

Figure 13: Info Page.

There are three tabs on the Info page:

• Log shows progress of Scan, Make, and Build processes.
• Validate shows the results of validation process when run by the user.
• Statistics shows statistics of the project upon the user’s request.

Visibility of info page can be toggled from View menu.

Log

Log displays information of scan, make, and build processes. It may display warnings or
errors, if there were any issues in any of aforementioned processes.

Figure 14: Log view shows information of scan, make, and build processes.
Validation Log

Besides showing the QA issues, navigating in the validation log automatically navigates
in the translation grid and focuses the control in the wysiwyg view. This both shows the
context better, and simplifies correction of the issue. (! Validation Wizard, p. 64)

Statistics

Multilizer Localization Guide 25

Statistics panel displays short information of translation status of native language and
currently selected (active) target language.

Figure 15: Statistics panel with quick info of translations.

Re-scan project
The idea of re-scanning the project is to check if anything has changed in the localization
source (native software or content). Any changes are automatically synchronized with the
project contents.

Categories

Synchronization changes row statuses, if any changes are found when re-scanning; the
following rules are applied:

• Strings that are not found in the localization source become ‘unused strings.’

• New strings get ‘new string’ flag, and the string is shown in native column.

• If the string of localization source has changed, the old string in the project is marked
as ‘unused’ and the new string is added as ‘new string’ in the project.

In order to review strings of any of the abovementioned category, the corresponding filter
must be applied. (! Filtering, p. 26)

Pre-translate project
Multilizer is able to use existing terminology to translate the project. There are two ways
of doing this.

1. Translate using Multilizer Translation Memory.

2. Import translations from the file.

Translate using Translation Memory

There are two ways of translating project using Translation Memory:

• Project!!!!Translate!!!!Using Translation Memory… will translate all languages of
the project.

• Right-clicking language column header and choosing Translate!!!!Using Translation
Memory… translates to current target language.

In both cases Multilizer will look up for translations in default Translation Memory;
Multilizer finds matches for Multilizer project’s native string, and populates Multilizer
project with corresponding translations. In case of several translations user can decide
which one to use.

Multilizer Localization Guide 26

Installation and maintenance of Translation Memory is discussed in the chapter
Translation Memory, p. 56.

Import translations from files and databases

Import Wizard can be used for directly importing translations from files and databases
supported by Multilizer.

This way of importing translations bypasses Multilizer Translation Memory, and fuzzy
matches are not supported. In order to support fuzzy-matching of translations, the files
should be imported in Multilizer Translation Memory, and the project should be translated
using Translation Memory.

To read more about importing files, databases, and importing translations from other
vendors' products (TRADOS, Déjà Vu, SDLX, etc.), c.f.,

Import Wizard, p. 37 .

Prepare project for translation
Before strings and accompanying information can be sent off to the translator (! Share
translation work, p. 27), it is useful to prepare the project for translation.

Filtering

Filtering enables user to show localizable data meeting a specified criteria (translation
status, row status, data type). Choose View!!!!Filter… to specify the rows to be shown.

For more info on filtering options, c.f., Row filtering, p. 46.

Pseudo languages !!!! QA

Software/content can be localized before translation by using pseudo languages; this
enables testing of the software/content localization before any translation work is done.
(! Pseudo Languages, p. 68)

Lock Visual Editors

Sometimes translators shouldn’t have the possibility to edit size and location of visual
elements. To prevent this from happening, you can make dialogs read-only. Choose from
the dialog editor’s context menu ‘options,’ and check ‘Read only.’

Marking dialogs read-only allows for translation, but no modifications on dialog size and
location can be done.

Translation control

In order to control translations, strings (rows) can be removed manually from the project.

Strings can also be hidden by applying the filter. Filtering shows strings depending on
their status.

In order to show strings to the translator but not allowing for translation, strings can be
locked.

In addition to the aforementioned features that prevent translation, there is the possibility
to limit translation length. Length can be limited to a certain character count or to a certain
pixel count.

Multilizer Localization Guide 27

4
Share translation work

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

User’s role in process: Localization engineer, Localization project
coordinator

Wizards: Exchange Wizard
Export Wizard
Import Wizard

Introduction
Multilizer includes built-in support for teamwork. It allows any Multilizer project to be split
and shared between team members. This is useful when sharing translation work. There
are three powerful Wizards that help in this:

• Exchange Wizard

• Export Wizard

• Import Wizard

In order to streamline the workflow and avoid conversion errors, translations and project
information should always be sent in Multilizer format. This is done by using Exchange
Wizard for sending off strings for translation, and importing translated strings with Import
Wizard.

Default workflow

In default workflow, translation work is shared between software developers/localization
engineers and translators. The workflow below shows the tasks in the context of the
Multilizer localization process.

Multilizer Localization Guide 28

Multilizer

Multilizer

Software Software

English
German
Spanish
Japanese

...

D e v e l o p m e n t

T r a n s l a t i o n

Figure 16: Default work-flow with Multilizer.

Developer/localization engineer starts a software localization project by scanning the
software and content with Multilizer, and creating a Multilizer project file. $ He uses
Exchange Wizard (!!!! p. 28) to create a Localization Kit that includes the translation tool
and the texts to be translated. The Kit is sent to the translator.

% The translator opens the Localization Kit. It automatically installs Multilizer Translator
Edition and the sub-project with texts to be translated on the translator’s computer. & The
translator uses Multilizer to translate the sub-project. ' When finished, the sub-project is
sent back.

(Developer/localization engineer uses Import Wizard (!!!! p. 37) to integrate the
translations in the project file.

Using Multilizer throughout has preserved the technical context of the translations, so it’s
very simple to create localized versions of the software.

Exchange Wizard
Exchange Wizard enables sharing of translation work in an efficient and safe way.
Because all linguistic data is sent in the same MPR-format (Unicode®), there is no risk for
data loss inherent to format conversions or character set incompatibilities.

Exchange Wizard is used to create a Localization Kit that is sent to the translator. Import
Wizard (! p. 37) is used to import translations back.

Creating Localization Kit

Exchange Wizard creates a Localization Kit that includes the following items:

• Sub-project (always)
• Multilizer Translator Edition (optional)
• User-specified files (optional)

Exchange Wizard assists in creating a sub-project that contains a sub-set of project
languages and targets. In addition, filtering can be applied to further control which strings
are added in a sub-project.

Multilizer Localization Guide 29

Multilizer Translator Edition can be added on user-request in the Localization Kit.
Multilizer Translator Edition is a freely distributable version of Multilizer, aimed for project
translation.

Exchange Wizard lets users also add any additional files in the Localization Kit.

Multilizer compiles the Localization Kit either to a self-installing setup (if Multilizer
Translator Edition is included), or a compressed Multilizer package file (MLP). Opening
the MLP-file in Multilizer will extract the sub-project and user-specified files in the same
directory as the MLP.

In order to ensure the best possible compatibility, ensure that the translator has the same
Multilizer build-number as the Multilizer copy used to create the Localization Kit. If build-
numbers differ, include Multilizer Translator Edition in the Localization Kit.

Unlike other localization products, users of Multilizer Translator Edition don’t need any
additional SDK’s or libraries (such as, .NET run-time or Symbian SDK, for example) to
translate the project. So in order to share the translation work, no other files besides the
Localization Kit need to be sent. This minimizes project coordination overhead.

Exchange Wizard steps

Exchange Wizard simplifies sharing of translation work; it creates an Exchange Package
(Localization Kit) that can be sent off for translation. Wizard is started by choosing
File!!!!Exchange….

Figure 17: Running Exchange Wizard.

Pressing Create a File button take the user to next page.

Languages Sheet

On this page user defines the languages and Items (Project tree nodes) to be included in
the package. By default all languages and all items selected.

Multilizer Localization Guide 30

Figure 18: Specifying the targets and resources to be exchanged.

Splitting the project by items makes it possible that multiple translators work on the same
language.

Options

On Options page user specifies, which strings are exported.

Figure 19: Filtering rows that are exchanged.

Translation status, Row status, and Duplicate strings filter strings in the same way as the
filter in string grid (! Row filtering, p. 46).

Information

Information page lets user specify basic information of the package. In addition package
can be password-protected in order to secure its contents.

Multilizer Localization Guide 31

Figure 20: Specifying project info, password protection.

Application

Application page is lets user decide whether to send Multilizer Translator Edition in the
package or not. Translator Edition is free, and if translator doesn't have Multilizer, the
package should be sent along with it.

Including Multilizer application in package with increase its size with ~3 MB.

Figure 21: Adding targets in exchange package.

Check ‘Application files’ to include localization targets in package.

Include Files

This page allows user to include any number of additional files in package. For example,
documentation can be included here.

Multilizer Localization Guide 32

Figure 22: Specifying additional files to be included in exchange package.

File

On this page the filename of package is defined.

Figure 23: Specifying the name for exchange package.

File-extension is MLP (Multilizer package), if package doesn’t contain Multilizer Translator
Edition.

If Multilizer Translator Edition is included, then package will be a Windows executable.
Running the executable will install Multilizer Translator Edition, and open the Multilizer
sub-project contained in the package.

Pressing Next button will take user to the next page, and create the package.

Package File

This page shows the process of creating the package. If no issues are encountered then
the Wizard will instruct user to send the package to the translator.

Multilizer Localization Guide 33

Figure 24: Building the exchange package.

Export Wizard
Export Wizard exports project strings either into TMX or text file. The main idea of using
Export Wizard is to exchange translations and terminology – and not localization
information – with other products.

Export Wizard enables sharing of translations with other products, such as TRADOS for
example.

Although Export Wizard can be used for sharing translation work, it should not be used
for that purpose. Export always requires format conversions, which may cause loss of
data. Exchange Wizard should be used instead.

Export Wizard steps

Export Wizard simplifies exporting of Multilizer Project (MPR) information to other file
formats. The Wizard is started by choosing File!!!!Export….

Multilizer Localization Guide 34

Figure 25: Running Export Wizard.

Pressing Create a File button takes to next page in Wizard.

File

File-page is the part of Wizard, where the output format is specified. Export Wizard
supports TMX (Continue here ! 34), and TXT (Continue here ! 35) files.

Translation Memory Exchange file (TMX)

TMX-file export makes it possible to export Multilizer project translations to a format that
is supported by a wide range of Translation Memory products.

Figure 26: Specifying export file and TMX file format.

Multilizer Localization Guide 35

There are many variations – and vendor-specific implementations – of TMX. In order to
support the original idea of exchanging translations, Multilizer allows users to specify the
most important TMX-file format parameters. These are explained in Multilizer help file.

TRADOS. Following screenshot shows the configuration that create a TMX-file that is
compatible with TRADOS® Translator's Workbench™: 2.3, 3.0, 5.0.1 (Build 217 or
newer), and 5.5 (build 247 or newer)

Figure 27: Export settings for TRADOS-compatible TMX.

In TRADOS 5.0 and 5.5 ‘Source language’ must match with the ‘Native’ language in
Multilizer, otherwise TRADOS will not be able to import the resulting file. TRADOS 2.3
and 3.0 require ‘Neutral’ as Source language.

Text file (TXT)

Exporting to text-file is the most generic way of exchanging translation data. Text-file
export creates plain text files, where each string with corresponding translations are
written to one line.

Multilizer Localization Guide 36

Figure 28: Specifying export file and text file format.

Export to text-file is very suitable for exchanging translations, because most products
support importing of it. Highest compatibility is achieved by choosing settings as shown in
picture above, and by exporting translations to one language only.

SDLX. The settings above create a text-file that can be imported in SDLX (version 4.0) as
such. User needs to import in SDLX ‘delimited files’ and specify source and target
language correctly.

Options

After specifying the file format, Next button takes user to the Options page. On this page
user specifies, which strings are exported.

Multilizer Localization Guide 37

Figure 29: Filtering of rows that are exported.

Export Range can be either the entire project or the current node. Current node
corresponds to the strings shown in the translation grid when Export Wizard was started.

Translation status, Row status, and Duplicate strings filter strings in the same way as the
filter in string grid (! Row filtering, p. 46).

Exporting of TXT-files and TMX-files allows users to choose any combination of
languages to be written in the file.

Import Wizard
Import Wizard is used to import translations from Multilizer project (MPR) files, and from
other formats.

Import Multilizer Project (MPR)

There are two reasons for importing Multilizer Projects.

1. It provides the means for leveraging translations from other Multilizer projects.
This is useful when creating a new Multilizer project and translations should be
the same as in existing projects. In order to ensure consistent terminology,
Translation Memory should be used.

2. When sharing a project with Exchange Wizard (! Exchange Wizard, p. 28),
translations of sub-project(s) are imported back with Import Wizard.

Because the Multilizer project (MPR) is Multilizer propriety format, it is the safest way of
exchanging translation data.

When using Exchange Wizard and Import Wizard together, correct import options play a
big role in the localization process. Typical import options for a Multilizer project are
discussed later in this chapter (!Import Options, p. 39).

Multilizer Localization Guide 38

Import from other formats

Multilizer also supports 3rd-party formats for importing translations. This enables
translations of other systems (e.g., TRADOS, SDLX, Déjà Vu, etc.) to be imported and
used in Multilizer.

If importing of translation data fails, check out the documentation of the product that
created the file. Also try out importing with a different set of import options. Because
Import Wizard relies on formats (and not on 3rd-party products), Multilizer can't guarantee
compatibility with any particular product.

Import Wizard steps

Multilizer imports both files and database content. When starting Import Wizard, the user
has to choose the translation source.

Figure 30: Running Import Wizard.

File import

File import requires that the user specifies the location of the file that is supported by
Multilizer.

Multilizer Localization Guide 39

Figure 31: Specifying the file to be imported.

The user can filter the files shown in the file list by choosing the appropriate file format
from the drop-down list.

If the user chooses ‘select file types…’ Multilizer opens the Select File Type assistant that
allows the user to specify platform and file type. Upon closing this dialog, Multilizer will
choose the correct filter.

Figure 32: Selecting file type for the file to be imported.

Import Options

Import Options is the most important part of the Import Wizard. The options specified here
affect the way that translations are imported.

For importing a Multilizer Project file, the options are as shown in the picture below.

Multilizer Localization Guide 40

Figure 33: Specifying Import options.

Import method tells how Multilizer performs the look-up of the native string. The user can
specify to match the Native column string only, or the user can force Multilizer to do
context-specific matching. This means that translations are imported in correct context.
This is the recommended way of importing Multilizer projects that were sent off with
Exchange Wizard.

Overwrite options specify the rules for importing a translation if Native look-up is
successful. In order to ensure the quality, the user should never allow Import Wizard to
import translations with lower (quality) status than those already in the project.

Translation status should be imported as such from (Setting: Yes) the project.

Import options are highly dependent on the file format of an imported file. Import options
for typical import file formats are discussed in the next chapter.

Options for typical file imports

Typically, the following file formats are imported with Import Wizard:

• Multilizer Project (MPR)
• Text file (TXT)
• Translation Memory Exchange file (TMX)
• Comma Separated Values file (CSV)
• Multilizer dictionary file
All of the abovementioned formats serve a specific purpose, and therefore special
attention should be paid on the import options.

Multilizer Project (MPR)

Import settings for MPR are discussed in Import Wizard steps, p. 38.

Translation Memory Exchange file (TMX)

Translation Memory Exchange File format is used for exchanging data between
Translation Memory products.

Multilizer Localization Guide 41

When opening a TMX file for import, Multilizer first detects the languages included in the
file.

Figure 34: Specifying languages to be imported from TMX file.

After specifying languages, the user can decide the options for importing translation data.

Figure 35: Import options for TMX.

Import method specifies the look-up method for matching Multilizer project’s Native
column with source language in the TMX.

For example, ‘By value’ means that the string found in Multilizer project's Native column is
matched with the source language segment contents of the TMX file.

Overwrite settings specify when a translation should be imported.

TMX format is based on XML, thus implying many vendor-specific variations. In addition,
there are many versions of this format. Therefore, finding of correct import/export settings
for this format can be time-consuming. If you use this format a lot, we recommend
subscribing to Multilizer SUMA (! Multilizer Support and Maintenance, p. 9), which
includes certain amount of free consulting. Multilizer consults have years of experience
on working with localization and human languages-specific file formats.

Multilizer Localization Guide 42

Text file (TXT)

Text file import work with files where each translation record is on one line in the text file.
Each line should contain at least a source term and target term separated by a delimiter
specified by the user. This filter imports CSV-files as well.

Figure 36: Specifying file format for importing text file.

For example, in the picture above, import filter is configured to import translations from a
text-file where each line contains four columns. Columns are separated with TAB
character. The Native column corresponds to native column in the open Multilizer project.
The Finnish column should include Finnish translations in the imported text file. The 3rd
column is ignored, and the 4th column includes a comment.

Upon completing the Wizard, Multilizer will match Native columns of the file and open the
Multilizer project. If there are matches, Finnish translations will be imported from the text
file. If there's a comment in the text file, it will be imported as well.

Comma Separated Values file (CSV)

Multilizer CSV support is intended for importing Microsoft glossaries, either as
translations to current project or to Multilizer Translation Memory.

In order to import other CSV files, use TXT-import instead; it includes all configurability
required to CSV-import. (! Text file (TXT), p. 42)

When using CSV-import to import Microsoft glossaries, Multilizer attempts to detect the
language of the selected glossary.

Multilizer Localization Guide 43

Figure 37: Selecting language for importing Microsoft glossary.

If language detection fails, the user can change it manually.

Multilizer Dictionary File

Multilizer Dictionary Files (MLD) were widely in use in previous Multilizer versions. They
were used both as glossaries as well as a resource in multilingual Delphi, C++Builder,
and Visual Basic applications.

Multilizer Localization Guide 44

5
Translate

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
 Multilizer for Java
Multilizer Translator Edition Pro
Multilizer Translator Edition

User’s role in process: Translator

Wizards: None

The Multilizer project can be translated with any Multilizer edition.

Restrictions
The items that the translator can access depend on how the project was prepared for
translation (! Prepare project for translation, p. 26).

Possible restrictions are:

• Translation length is limited to a certain pixel or character amount. If translation
doesn’t fit, it should be reported in the comment.

• String is locked; translation can't be added.

• Wysiwyg editor is read-only; translations can be edited, but forms position and size
can’t be edited.

The translator should always check the availability of possible comments; there may be
translation-specific information.

Restrictions can’t be disabled in sub-projects. If translation is done directly on a main
project (i.e., Exchange Wizard has not been used), then restrictions can be disabled as
described in the chapter ‘Prepare project for translation’, p. 26.

Translation work-place
Translation work-place is the part of Multilizer user interface where translations are done.

Project Tree enables easy navigation between project parts, and corresponding strings
(and other localizable data) is shown in translation grid. Multilizer Translation Grid always
shows Native language and target language.

Multilizer Localization Guide 45

New (native) strings are marked with a yellow dot in the grid margin.

Figure 38: Translation view in Multilizer.

If selected node is a dialog or menu, Multilizer displays it as Wysiwyg, as in image above.
Untranslated strings are shown in red.

Selecting visible columns

Choosing Columns… from the Translation Grid’s context menu (or selecting
View!!!!Columns… from main menu) brings the following dialog that lets the user specify
the visible columns:

Figure 39: Choosing visible columns in translation grid.

Multilizer Localization Guide 46

In order to view more than one language, select any of the languages listed in View
menu.

Row filtering

Filtering is used to view only a part of the localizable data in translation grid. Users can
specify how to filter rows by translations status, row status, and data type. Choosing
View!!!!Filter… shows the Grid Filter dialog.

Data type filter

Translating strings is one part of localization. In addition to these, there are other kinds of
data that need to be changed in the localized software. Multilizer can show in the
translation grid various data types.

On Data Types tab user can define what data types are shown in the translation grid.

Figure 40: Options for filtering by data type.

Generally, the translator should not translate non-textual data, except if asked separately.
Translating non-textual data can damage the localized software, preventing it from
working correctly.

Translation status filter

On Translation Statuses tab user can specify, how to filter rows by the target language’s
status. If all statuses are checked, rows are shown regardless translation’s status.

Multilizer Localization Guide 47

Figure 41: Options for filtering by translation status.

Row status filter

On Row Statuses tab user can define, how to filter by row status.

New rows contain localizable data that was not present in last re-scan (! Re-scan
project, 25) of targets. Unused rows are those that are not found in the targets. In use
strings are those that are found

Figure 42: Options for filtering by row status.

Multilizer Localization Guide 48

Other filters

Others tab contains other attributes that can be used for filtering.

Strings can be filtered by Do not translate -status as shown in figure below.

Figure 43: Options for filtering strings by Do not translate -status.

Translation grid options

Right-clicking the translation grid area and selecting Options… from the context menu
(Main menu: Tools!!!!Options!!!!Grid…) shows the grid options dialog. Grid options affect
how translations are shown in the grid, and what additional information is shown.

Figure 44: Translation grid options.

Multilizer Localization Guide 49

Visual Editors, Wysiwyg

Visual Editors enable editing of both non-textual data as well as translation.

Translations of dialogs and menu-items can be edited so that results of localization are
shown visually during translation. This feature -- also known as Wysiwyg (What you see
is what you get) -- reduces the time spent on localization QA.

Multilizer visual editors allow two-way navigation. When user navigates in translation grid
corresponding control in wysiwyg gets focused. When user works in wysiwyg,
corresponding cell in translation grid gets focus.

Figure 45: Visual editor for forms and dialogs.

Multilizer Localization Guide 50

Figure 46: Visual editor for menus.

Visual Editor (Wysiwyg) settings

Right-clicking the wysiwyg area and selecting Options… from the context menu (Main
menu: Tools!!!!Options!!!!Graph…) shows the wysiwyg options dialog.

Figure 47: Options for visual dialog editors.

Options

• Auto bounds makes placeholder resize to the same size as translated string.
• Can reduce allows manually decreasing the size of placeholder.
• Read only locks the editor in the way that only translation is allowed; any

modifications on layout are disabled.
• Show bounds enables color coding control boundaries according to changes in size

and position of localized placeholder's (! Control boundary colors, p. 69)

Multilizer Localization Guide 51

• Show components will show non-visual components as well. This setting applies to
component-based environments, such as VB, Delphi, C++Builder, and VS.NET.

• Show status will show status of wysiwyg components.

Grid

Grid options allow users define grid size and whether to show it or not.

Localization of strings
Editing translations is easy; translations are simply entered in translation grid, just as in
Excel spreadsheet for example.

You can start editing the contents of a cell by double-clicking the cell with the mouse,
pressing the F2 key, or simply starting to type.

You can stop editing the contents of a cell by clicking outside the cell with the mouse or
by pressing the F2, UP, DOWN, or TAB key. If the native cell contains line feeds, you
have to press the Ctrl+UP, Ctrl+DOWN, or Ctrl+TAB keys.

Pressing ENTER stops editing and moves the cursor to the next cell if the native cell
doesn’t contain line feeds. If it does, then pressing ENTER adds a line-feed to the cell.
Press Ctrl+ENTER to stop editing and moving to the next cell.

During editing, the cell has a light yellow background, and it shows non-visible
characters.

Figure 48: Translation grid with cells showing non-visible characters.

Localization of accelerators
If selected node is Accelerators, Multilizer displays them in Accelerator table.

Multilizer Localization Guide 52

Figure 49: Accelerators view.

Double-clicking an accelerator enables translation of it.

Figure 50: Localizing an accelerator.

Localization of images
In addition to text translation, images can be “translated,” which means that images of the
original software can be replaced with new ones in the localized software. Bitmap
resources, cursor resources, and icon resources are images.

In order to see images, ensure that Images is selected in grid options (! Error!
Reference source not found., p. Error! Bookmark not defined.).

Multilizer Localization Guide 53

Figure 51: Localizing images.

Native language image can be copied to target language choosing Edit!!!!Paste
Native…. If image will be the same in Native language as in target languages, it shouldn't
be copied.

In order to localize the image, right-click target language cell and choose Load…. User
will be prompted for the location of localized image.

Localization of AVI and other custom resources
Multilizer localized Windows custom resources. Windows custom resources can contain
any data, such as AVI animations, Wave sound files, etc.

Custom resources are binary data. In order to see custom resources, ensure that Binary
values is selected in grid options (! Error! Reference source not found., p. Error!
Bookmark not defined.).

Multilizer shows a place-holder for binary data in translation grid.

In order to localize custom resource, right-click target language cell and choose Load….
User will be prompted for the location of localized custom resource.

Software translation specifics
There are major differences between the translation of words and phrases in software
and conventional translation work. The clearest differences are the following:

Multilizer Localization Guide 54

• There are a lot of one-word translations to do. The strings to be translated are mostly
very short.

• The GUI (Graphical User Interface) elements have standard and mostly explicit
translations.

• Strings may include characters and codes that have a special purpose in the context
of the software functionality.

• The GUI may require a certain maximum length of translations.
In addition, there are many other features that can be derived from those mentioned
above. Multilizer includes many features that help you do the translation work.

Characters with a special purpose

Depending on the programming language and the programming technique that the
developer has used, the strings in the dictionary may include special characters.

Sample string Explanation
Cannot create file %s %s is used to denote a string inside another

string.
E.g., if ‘temp.txt’ is assigned to %s, the software
would show the following: ‘Cannot create file
temp.txt’
So, %s must exist also in the translation.

%s (%s, line %d) This is like the example above. There can be
multiple special characters in one string to be
translated.
If you have to change the order of the special
characters in your translation, inform the
developer of this.

%0:s (%1:s, line %2:d) If the code is property internationalized, there
should not be a string like in the above row but
like in the left. As you can see, every variable
has been indexed so you can freely change the
order of variables.

&File The & sign is used in menu items and button
captions to show the hotkey, i.e., the character
that is underlined and is used to trigger the
menu.
In the example at the left, the text would be
shown as File in the menu. It’s up to you to
decide which hotkey you want to use in the
translation.

CODEBASE_ENUM This kind of dictionary items can normally be left
untranslated. The developer might be using it in
a way related to software functionality.
Normally the developer should mark strings that
need no translations. These strings appear on a
gray background in the dictionary.

Maximum length of translations

One common issue is the length of the strings to be translated. The string layout in the
original software may accept only slight changes in string length. Therefore, the translator
has to pay special attention to this.

Multilizer Localization Guide 55

Multilizer helps in showing possible troublesome translations: it makes the cell
background darker the more the translation’s length exceeds the native string’s length. In
addition, Wysiwyg gives the translator immediate feedback of whether the translation fits
in a dialog or not.

Translation Memory maintenance
Multilizer Translation Memory allows storing of translations made in the project, and
importing translations from glossaries. In order to keep its translations consistent, it needs
to be maintained. (!Translation Memory, p. 56)

Sending back translations
If translations were made on a sub-project (i.e., based on a Localization Kit made with
Exchange Wizard), translations must be sent back to be integrated in the main project.
Choosing File!!!!Exchange… from the main menu will instruct in this.

Multilizer Localization Guide 56

6
Translation Memory

Required product(s): Any

User’s role in process: Terminologist, QA personnel, Translator.

Wizards: –

Introduction
All Multilizer products include Translation Memory.

The idea of Translation Memory is to store translations for easy re-use. Reuse of
translations saves time, and translations become more accurate as the same translation
is applied in every occurrence of the same native string.

Multilizer Translation Memory stores translations in a database. The database can be
either local database (such as DBISAM) or server database (E.g., SQL Server, Oracle). If
there is no commercial database system installed, Multilizer uses its own database
(DBISAM) for storing translations.

Ensuring the Translation Memory quality

Because Translation Memory automates translation, users should pay extra attention to
the quality of translations that are stored in it. If non-sense data gets stored in it,
automated translations may also return bad results. This would compromise the benefits
of using Translation Memory at all.

Before adding any data in Translation Memory, check out following chapter ‘Store
translations’ (p. 60). It explains how to ensure that translations of decent quality get
stored in Translation Memory, and how to use block words to improve fuzzy match
performance in both speed and quality.

Using Translation Memory

See ‘Translate using Translation Memory’ chapter (p. 25) for information on how to
translate open Multilizer project.

Multilizer Translation Memory configurations are found in Tools!!!!Translation
Memories… menu. It will display the Translation Memory configuration dialog.

Multilizer Localization Guide 57

Figure 52: Translation Memory administration.
Multilizer allows using of several translation memories. Each configured translation
memory is shown in left-hand side list box. Default translation memory is checked in the
list. Translation Memories that have no active database connection are shown in gray.

In order to be able to configure any of the translation memories, you must be connected
to it. Once connected, there are five tabs:

• General
These settings affect the way that active Translation Memory is used from
Multilizer; it specifies on which condition project translation is stored in Translation
Memory, and on which condition Translation Memory returns translations for
translating project’s native string (! Translate using Translation Memory, p. 25).

• Documents
All translations stored in Translation Memory are grouped by documents.
Documents can be either Multilizer projects whose translations are saved to
translation memory, or glossaries that have been imported by using Import Wizard.
(! Store translations, p. 60)

• Block Words List
Block words are used in fuzzy match searches. Besides excluding common words
(and hence preventing unwanted matches) using them improves the performance.
(! Block words, p. 62)

• Concordance
On concordance tab matching method is specified. If configured Translation
Memory supports fuzzy match, user can set threshold for returned translations. (!
Finding Translations, 58)

• Maintenance
Maintenance tab contains Translation Memory maintenance specific functions,
such as backup, restore, and clear. (! Maintenance, p. 62)

Multilizer Localization Guide 58

Finding Translations

Multilizer supports three different ways for finding translations for project’s native string.

• Fuzzy matching looks for strings that have something in common with project's native
string. User can specify a threshold percentage, in order to control how similar strings
have to be.

• Minimal difference match looks up for strings that have the same words.
Capitalization, punctuation and special characters are ignored.

• Perfect match looks for strings that are exactly same as the native string.

Close-to matches and perfect matches are bidirectional; if English to German translations
are stored in Translation Memory, Multilizer can find German to English translations too.

Figure 53: Translation Memory; setting matching options.

Installation of Multilizer Translation Memory
When running Multilizer for the first time it creates a local DBISAM Translation Memory.
Depending on the specific needs, user can afterwards add any number and any type of
Translation Memories.

New Translation Memories can be added either on local database or on database server.
Read chapters ‘Create Local Translation Memory’ (p. 59) and ‘Create Server Translation
Memory’ (p. 59) before adding a Translation Memory.

Click Add… button in Translation Memories dialog to add new Translation Memory.

Multilizer Localization Guide 59

Figure 54: Adding properties of a new Multilizer Translation Memory.

Name is a descriptive name for the Translation Memory.

Language is the source language by which the Translation Memory is indexed.

Options allow configuration of basic functionality; multi-user support, and fuzzy-matching.
Multi-user option is available only for database servers.

Selected options affect the format of Multilizer Translation Memory. They can't be
changed after creating it.

Depending on the selected database, connection parameters vary. To get correct
parameters, ask your system administrator. If DBISAM database is used, directory should
point to an empty directory if you want to create a new Translation Memory. If there's an
existing Multilizer 6 Translation Memory in the directory, that will be used.

Create Local Translation Memory

Before creating a new Translation Memory from Multilizer, user has to create an empty
database for it. The only exception is DBISAM, where Multilizer creates the database.

In New Translation Memory dialog (Figure 54: Adding properties of a new Multilizer
Translation Memory.) user then specifies the connection parameters to the empty
database.

Create Server Translation Memory1

Multilizer Translation Memory can be installed on Database Servers, such as Oracle,
SQL Server, and Interbase for example. This enables better performance with big amount
of translations.

Furthermore this enables multiple users to use the same Multilizer Translation Memory.

1 Feature enabled in Multilizer Enterprise.

Multilizer Localization Guide 60

To create Multilizer Translation Memory on database server following steps need to be
done:

1. Create a user on database with sufficient rights to create and drop database.
Create an empty database that will contain the tables required by the Translation
Memory. (This is done with database administration tools).

2. In New Translation Memory dialog (Figure 54: Adding properties of a new
Multilizer Translation Memory.) user then specifies the connection parameters to
the empty database. Multilizer will create the tables required by Translation
Memory. In addition Multilizer adds default Translation Memory user with full
Translation Memory administrator rights to it.

3. Add/modify Translation Memory users. This is done with Multilizer Translation
Memory user management (! Next chapter).

Because Multilizer Translation Memory has its own user management, there is no need –
from Multilizer Translation Memory user management point of view – to specify the users
with database administration tools; Multilizer's own user management allows specifying of
appropriate access rights for different users connecting to Multilizer Translation Memory.

In case of assigning users using database administration tools, required database access
rights are discussed on SQL Statement level here: , p. 60.

Store translations
Translations are stored to Translation Memory either by saving project translations to it
(File!Save to Translation Memory…) or by importing translations as documents.

Save project translations

When choosing File!!!!Save to Translation Memory… in Multilizer, the translations of
open project will be stored in default Translation Memory. Project translations can be
configured to be saved in Translation Memory automatically.

Regardless the way of storing translations, user can define that only strings with certain
status are stored in translation memory. For example, only QA-ed or Ready strings are
stored. This ensures that only verified strings are stored.

2 Feature enabled in Multilizer Enterprise.

Multilizer Localization Guide 61

Figure 58: Translation Memory; general settings.

Import documents

Click Add… on documents tab to import translations.

Figure 59: Translation Memory; importing of documents.
When importing text, it is passed through Multilizer Translation Memory’s segmentation;
text is being split in shorter strings, which improves fuzzy match search results.

Multilizer Localization Guide 62

Segmentation

The idea of segmentation is to split longer source language texts into segments by using
segmentation rules. As a result one or more source language segments point to
corresponding translation. This helps to easier find existing translations.

A segment is normally equivalent to a sentence. Based on this, pre-defined set of
segmentation rules aim to split text in sentences. E.g., a full stop, exclamation mark,
question mark, or colon indicate the end of a sentence when they are followed by a
space.

Block words

Segments are stored in a way that each word of it – except a block word – is indexed.
Block words are typically the most common words of a spoken language. Common words
exist in most sentences, hence not differentiating two sentences in any way.

Specifying block words will improve the results of fuzzy-matching and speed up searches.

Figure 60: Translation Memory; specifying block words.

Maintenance
Maintenance tab includes tools that affect the entire Translation Memory.

3 Feature enabled in Multilizer Enterprise.

Multilizer Localization Guide 63

Figure 62: Translation Memory maintenance tab.

• Clear
Clear will erase all translations from Translation Memory; it clears all tables of
Translation Memory database.

• Backup
Backup will export Translation Memory database contents to an XML-file. It makes
perfect copy of table structures and data.

• Restore
This restores the translations from existing backup file. Restore erases existing
translations.

• Repair
Repair checks out for unlinked segments and other garbage data in Translation
Memory, and attempts to make corrections.

Multilizer Localization Guide 64

7
Quality assurance

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
 Multilizer for Java
Multilizer Translator Edition Pro
Multilizer Translator Edition

User’s role in process: QA personnel, Translator

Wizards: Validation Wizard

Quality assurance features are available in all Multilizer versions. However, complete
testing of localization requires the possibility to build (!Build localized versions, p. 73)
localized versions of software/content.

There are both automated and informative quality assurance features in Multilizer.

• Validation Wizard is an automated QA feature.

• Informative QA features give the user visual feedback, such as cell colors, on-line
statistics, etc.

Validation Wizard
Validation Wizard automates validation of common QA issues in localization. It includes a
comprehensive set of tests performed against localized versions of software/content.

Selecting Project!!!!Validate Options… lets user choose the validation routines to run.
Results of validation can either be directed to log window, or it can be saved as a report
for later review. If validation settings differ from default options, they are stored in the
Multilizer project; this ensures that the same validation is applied consistently in the
project.

Multilizer Localization Guide 65

Validation types

Figure 63: Selecting validations to perform.

Missing translation. This validation tells if native string is translated or not. This
validation is useful after re-scanning the project; the user will immediately get feedback of
the location of new strings.

Inconsistent format string. This validates that same formatting strings (arguments) are
present both in native string and translation. (Press %S to…, place holders)

Invalid amount of new line characters. This validates that the number of New Line (NL)
characters match in native string and in translation.

Glossary mismatch. This validation checks if translations match with translation memory
contents.

Incorrect spelling. This validation checks spelling using MS Office spell-check. For
further spell-check support, please refer to MS Office documentation.

Invalid amount of white space characters. This checks that both native string and
translation include the same number of White Spaces at string start and end.

Missing periods. This checks that both native string and translation include the same
number of periods at the end of the string. (Useful in menus; File…or Open…)

Missing colon. This validation checks that if native string includes a colon at the end,
translation should also. This is important, because label captions generally should include
a colon, and corresponding buttons should not. If native software follows these
guidelines, this validation ensures the same quality in localized versions.

Missing Tab. This validation checks if native string and translation have the same
amount of tab-characters.

Inconsistent hotkey. This validation checks if native string and translation have the
same amount of tab-characters.

Inconsistent hotkey character. This validation checks, if hotkey is valid. For example
hotkey can’t precede a line break.

Multilizer Localization Guide 66

Invalid hotkey position. Hotkey can’t be the last character of a string.

Duplicate accelerator. Checks that there are no duplicated accelerators.

Duplicate menu hotkey. Checks that there are no duplicated menu hotkeys; in each
drop-down menu hotkeys must be unique.

Duplicate form hotkey. Checks that there are no duplicated hotkeys on the form or
dialog. The hotkeys must be unique on each form/dialog.

Overlapped controls. Checks that placeholders of visual controls are not overlapping.

Unmapped component. Checks that visual components are mapped to a visual
representation. This mapping ensures that 3rd-party and custom controls are shown
correctly in Wysiwyg. This validation is useful in highly component-based development
environments, such as Delphi (! p. 115) or Visual Studio .NET (! p. 138) for example.

In order to generate report of validation results, check Generate report on Report tab (!
Validation reports, p. 71).

Working with validation results

Validation results are displayed in validation log of info page.

Multilizer Localization Guide 67

Figure 64: Displaying validation results.
Quick fix

Multilizer offers quick fix for several validation issues. Just click Fix to have Multilizer
correct the issue automatically. If fix doesn’t correct the issue, you can still manually fix
the problem.

Navigation

When a row of validation log is clicked, corresponding translation is shown both in
translation grid and visual editor. In addition Project tree shows current node. This auto-
navigation feature makes it extremely fast to process validation results.

Change translation status

Whenever an issue is corrected, translation status should be changed to QAed (or any
other status used by the company). This makes it possible to later filter out validated
parts of project. (! Translation Status, p. 69)

If you correct issues immediately, it’s possible to make Multilizer change translation status
automatically; Select Tools!!!!Options…!!!!Status, enable Default status on select, and
set desired status. Now clicking a row in validation log will change status automatically.

Multilizer Localization Guide 68

Pseudo Languages
Multilizer includes comprehensive support for test and pseudo languages. Each language
in the project can be populated with pseudo translations. This enables complete
localization of software/content before translation of the project has even begun.

To use Pseudo translation, right-click language column and choose Fill Pseudo
Translation… (Main menu: Column!!!!Fill Pseudo Translation…). This shows the
configuration dialog for Pseudo Translation.

Figure 65: Defining Pseudo Translation properties.

There are several tests with different purposes, and for detecting different issues. After
defining a test for a language, it can easily be turned on/off.

Cover

This test replaces all characters of a string with the same number of user-defined
characters. This test helps to detect potential UI issues; it lets users immediately see non-
localized parts of the UI, hence locating possible internationalization issues.

Minimum

This test replaces all strings with a single user-defined character. This test helps to detect
potential UI issues.

Pseudo language

Pseudo language test is the most sophisticated test language. Besides allowing more
customization, it also helps in testing localization to different character sets.

Pseudo language supports single-byte LTR (left-to-right) character sets, single-byte RTL
(right-to-left) character sets, DBCS (Double-byte character sets), and Unicode®.

Informative QA features
Informative QA features give the user feedback of translations. The user’s responsibility
is to interpret the information, and understand possible issues involved.

Multilizer Localization Guide 69

Cell coloring

Cell colors give the user immediate feedback of relative change in the translation length;
the longer translation is compared with native string, the darker the shade of blue of
translation background.

Display of non-printing characters

In cell-editing mode, Multilizer shows non-printing characters exactly as in Microsoft
Word; this helps translators to see duplicated spaces, tabulators, etc.

Statistics panel

Statistics panel shows statistical info of native string and its translation.

Control boundary colors

In Visual Form editors, Multilizer displays control boundaries in red, if control size or
location is modified in localization. This helps to get a quick overview of changes in UI.

Colors are applied as follows:

Left: Control has been moved horizontally.

Top: Control has been moved vertically.

Right: Control width has been modified.

Bottom: Control height has been modified.

For example, if localized control has been resized horizontally and moved horizontally,
control is shown with red boundaries at the left and right sides of it.

Translation Status
Each translation is Multilizer has a status. Status is shown in its own column, and as an
abbreviation in translation column.

Maintaining status information in localization project simplifies working with big projects.
As discussed earlier, translation status can be used for filtering project translations. In
addition, with appropriate use of status information, project reports (! Reports, p. 71)
give a more realistic picture of entire project’s status.

Multilizer Localization Guide 70

Set status automatically

Translation Status changes automatically when translating:

• When using glossaries, Translaiton Memory, or using duplicates, translation status
become 'Auto translated'.

• When translating manually, status becomes ‘Translated’.

Aforementioned statuses can be modified (Main menu: Tools!!!!Options…!!!!Status).

Set status manually

When validating a Multilizer localization project, the QA person needs to set status either
to QAed or to Ready (just before release).

There are several ways of setting status:

• Right-click translation, and set status.

• Toggle status by clicking space bar on cell in status column.

• Toggle translations status with Ctrl+T.

• Set status by selecting cell. You need to enable 'Default status on select' for this
option (Main menu: Tools!!!!Options…!!!!Status).

Multilizer Localization Guide 71

Reports
Multilizer produces two kinds of reports:

• Project reports with statistics of project.

• Validation reports with statistics of last validation.

All reports that Multilizer produce are in XML format. This ensures that the data can easily
be imported in other systems, such as corporate resource-management systems.

Project reports

Multilizer Project reports (Main menu: File!!!!Project Report…) give a good insight in
localization project status; it shows translation counts by status, and groups localizable
items by targets and by languages.

Figure 66: Project report.

Validation reports

In addition to showing validation results on-line, Multilizer can write out detailed validation
reports. To generate a report select Project!!!!Validate As…, and select Report tab.
Check Generate report.

Multilizer Localization Guide 72

Figure 67: Validation report options.
Validation reports show results by validation types, by localization targets, and by
languages.

Validation report can be either shown immediately, or any time later by selecting
Project!!!!Validation report….

Modifying reports

Report data is displayed using XSL (XML Style sheet). Users can change the layout by
applying another style sheet to the report. In order to change style sheet reference of
generated XML, select Project!!!!Options….

Figure 68: Specifying style sheet for reports.
By specifying style sheet location, Multilizer will generate all reports with referral to the
specified one. If Style sheet field is left empty, Multilizer uses default style sheet.

Multilizer Localization Guide 73

7
Build localized versions

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java
Multilizer Translator Edition Pro

User’s role in process: QA personnel

Wizards: None

Build is the last step in the Multilizer localization process; it creates localized items of
targets.

How does build work
Localized software items are created by reading original software, and writing localized
items using localization information found in the Multilizer project. Multilizer never
overwrites the original software. The result of localization depends on the software
platform and type; refer to the tutorials for detailed information.

Localized data files are created by reading the original data file, and writing localized data
files using localization information found in the Multilizer project. The structure of a data
file remains exactly the same. Multilizer never overwrites original data files.

In database localization, localized data is written either in new records, localized tables,
or localized fields. The way Multilizer works depends on the database localization type.
Refer to the database localization tutorial for more info.

Multilizer Localization Guide 74

Part II: Multilizer Tutorials

This part includes tutorials for localizing software/content on specific platforms, and each
tutorial describes the respective target in depth.

Tutorials:

• Windows tutorial
Localization of Windows binaries (EXE, DLL, OCX) that include standard Windows
resources. (Software is most commonly developed with Visual C++)

• VCL tutorial
Localization of Windows binaries (EXE, DLL, OCX) developed with Delphi or
C++Builder.

• .NET tutorial
Localization of Visual Studio .NET projects, C#Builder projects, or individual ResX
resource files.

• Database tutorial
Localization of database contents.

• XML tutorial
Localization of XML-files.

• Source localization
Localization of single source files.

• Data file localization
Localization of INI, SHL, and Key (TXT) files.

Multilizer Localization Guide 75

8
Windows Tutorial

This tutorial describes localization of Windows software.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for Visual C++

Sample(s): <mldir>/VCPP/dcalc

Tutorial(s): -

Because the resource format is the same for Windows software and Windows CE
software, both can be localized using binary localization. For testing Windows CE
software, Multilizer supports running localized software in emulator.

• To learn the basics of localization of Windows (C++) software and localization
prerequisites, go through the entire tutorial. It requires that you have Visual C++ (4-6)
or eMbedded Visual C++ installed on your computer.
! Introduction, p. 75.

• To learn how to use Multilizer for Windows software localization, you can localize any
of the sample applications.
! Create Multilizer Project, p. 84.

Introduction
For localization of Windows software, Multilizer supports both binary- and RC-localization.
Binary localization applies directly to software executable, and RC-localization is done on
source code (RC and RC2 files). Binary localization projects are simpler to maintain,
because the amount of files to localize is much smaller than in RC-localization.

Localization requires that all localizable data is put in resources during development. This
is normally the case in developing Windows software with Visual C++, for example.

Binary applications, libraries, or components contain the resource data in the application
files (e.g., .exe), library files (e.g., .dll), or component files (e.g., .ocx). Multilizer creates
the localized application files from the original file. The following picture describes the
binary localization process:

Multilizer Localization Guide 76

Application
Native resources

Application
French resources

Application
German resources

Application
English resources

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file Application

English resources

German resources

French resources

or

Figure 69: Binary localization process.

The programmer uses Multilizer to extract localizable resources from the original
application file (1). Multilizer saves these to the project file. The programmer sends the
project file to the translator(s) that use Multilizer to translate the project file (1). The
programmer uses Multilizer or Builder to create the localized application files (2). As a
result, there will be one application file for each localized language and/or a single binary
file containing all languages.

Open Tutorial Application
We could start from scratch but in most cases it is a completed application or at least
some specific application under construction that you want to globalize. This is what we
are going to do. The <mldir>\VCPP\Samples\Tutorial\dcalc.dsw contains the
project file of Dcalc sample application for Visual C++. Compile and run the application.

The application should look like this:

Figure 70: Driving time calculator with English user interface.

The <mldir>\EVCPP\Samples\Tutorial\dcalc.vcw contains the project file of
Dcalc sample application for Embedded Visual C++. Compile and run the application.

The application should look like this:

Multilizer Localization Guide 77

Figure 71: English Visual C++ Windows CE application.

The user interface language is UK English and the applications use UK format with
currency, date and time. In the following chapters, we will turn Dcalc into a truly
multilingual application, step-by-step.

Internationalization
This chapter describes the binary internationalization process. Internationalization is the
process of generalizing a product so that it can handle multiple languages and cultural
conventions without the need for re-design; re-engineering source code so that products
and applications are compatible with country-specific operating systems and software.
Internationalization (I18N) takes place at the level of program design and document
development.

Open the Tutorial application, <mldir>\VCPP\Samples\Tutorial\dcalc.dsw, or
<mldir>\EVCPP\Samples\Tutorial\dcalc.vcw.

Study the source code of the application to familiarize yourself with it. It is not a complex
application, so you should get the idea fairly quickly.

The most important part of the internationalization (I18N) is resourcing. This means
removing all hard coded strings from the application’s source code. Traditionally, hard
coded strings are turned into resources by moving the strings from the actual code into
the resource strings.

Select the ResourceView sheet. Select the dcalc resource leaf from the tree and click the
right mouse button. Choose Insert. The Insert Resource dialog appears.

Multilizer Localization Guide 78

Figure 72: Insert Resource dialog box.

Select String Table resource and press New. The String Table editor appears. Add the
following resource strings to the table:

Figure 73: String Table editor.

The next step is to set the right value to the user interface labels. The original application
shows the speeding fine in Pounds, the date and time in UK format, the locale and
language labels have been hard coded to English (UK) and English. In addition, the
application requires the input in kilometers and in kilometers per hour.

An essential part of internationalization is to make the code locale independent. This
means that the code is not hard coded to a single locale (e.g., English (UK)) but works
with any locale.

Windows contains NLS API. It is a collection of locale functions that have access to the
locale database. GetLocaleInfo function is used to get locale specific data such as
measurement system, data format, etc.

To prepare your code to locale enabling, we have to write some helper functions.

Multilizer Localization Guide 79

Visual C++ void CDcalcDlg::SetLabel(int control, int resourceId)
{
 CString str;

 str.LoadString(resourceId);
 SetDlgItemText(control, str);
}

void CDcalcDlg::SetLocaleLabel(int control, int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 SetDlgItemText(control, str);
 free(str);
}

int CDcalcDlg::GetLocaleInfoInt(int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);
 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 int value = atoi(str);
 free(str);

 return value;
}

EVC void CDcalcDlg::SetLabel(int control, int resourceId)
{
 CString str;

 str.LoadString(resourceId);
 SetDlgItemText(control, str);
}

void CDcalcDlg::SetLocaleLabel(int control, int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 SetDlgItemText(control, str);
 free(str);
}

int CDcalcDlg::GetLocaleInfoInt(int localeItemId)
{
 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, NULL, 0);
 LPTSTR str = (LPTSTR)malloc(len + 2);
 GetLocaleInfo(LOCALE_USER_DEFAULT, localeItemId, str, len);
 int value = _wtoi(str);
 free(str);

 return value;
}

SetLabel function sets the label of a user interface element to a value found from the
resource string. SetLocaleLabel sets the label of a user interface element to a value
found from the locale database. GetLocaleInfoInt function returns an integer value from
the locale database.

Now we can update the user interface items to match the current locale. Keep in mind
that the system has a default locale. This locale is given to all applications currently
running. You can change the default locale from the Control Panel.

Multilizer Localization Guide 80

OnInitDialog method is used to initialize the dialog box. Add the following code to the end
of the OnInitDialog method.

Setlocale function sets the formatting functions of the C run-time library to use the default
locale. The original Dcalc uses kilometers and km/h. In United States, miles and miles per
hour are used. LOCALE_IMEASURE value of the locale database contains the
measurement system of the locale. GetLocaleInfoInt gets the measurement system. If the
system is metric, kilometers are used otherwise miles are used.

There are four different ways to show the currency value. They are 500 $, 500$, $500,
and $ 500. You can put the currency label before or after the value and use a space
between or not. LOCALE_ICURRENCY value if the locale database contains this
information. The switch-case block formats the speeding fine according to the current
locale.

CTime class has the Format method that returns the date and time as a string that has
been formatted according to the current locale.

The final step is to update the locale and language labels. LOCALE_SLANGUAGE
returns the current locale as a string. IDS_LANGUAGE resource string contains the name
of the language in its own language (e.g., English, Deutch, suomi).

Visual C++ BOOL CDcalcDlg::OnInitDialog()
{
 …
 // Sets the locale depend format function to use the default locale

 setlocale(LC_ALL, "");

 // Gets the measurement system
 // Sets the Driving distance label: km or miles
 // and the Average driving speed label: km/h or mph

 if (GetLocaleInfoInt(LOCALE_IMEASURE) == 0)
 {
 // Metric

 SetLabel(IDC_DISTANCE, IDS_METRIC_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, "100");
 SetLabel(IDC_SPEED, IDS_METRIC_SPEED);
 }
 else
 {
 // US

 SetLabel(IDC_DISTANCE, IDS_US_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, "65");
 SetLabel(IDC_SPEED, IDS_US_SPEED);
 }

 // Set the fine value: $500, 500 mk, etc

 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, NULL,
0);
 LPTSTR currStr = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, currStr, len);

 LPTSTR buffer = (LPTSTR)malloc((strlen(currStr) + 5)*sizeof(TCHAR));

 switch (GetLocaleInfoInt(LOCALE_ICURRENCY))
 {
 case 0:

Multilizer Localization Guide 81

 sprintf(buffer, "%s500", currStr);
 break;

 case 1:
 sprintf(buffer, "500%s", currStr);
 break;

 case 2:
 sprintf(buffer, "%s 500", currStr);
 break;

 case 3:
 sprintf(buffer, "500 %s", currStr);
 break;
 }

 SetDlgItemText(IDC_FINE, buffer);
 free(currStr);
 free(buffer);

 // Set the date and time

 SetDlgItemText(IDC_DATETIME, CTime::GetCurrentTime().Format("%c"));

 // Sets the current locale and user interface language

 SetLocaleLabel(IDC_LOCALE, LOCALE_SLANGUAGE);
 SetLabel(IDC_LANGUAGE, IDS_LANGUAGE);

 return TRUE;
}

OnInitDialog function in the Embedded Visual C++ is almost identical. We use
COleDateTime instead of CTime.

EVC BOOL CDcalcDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE);
 SetIcon(m_hIcon, TRUE);

 // Gets the measurement system
 // Sets the Driving distance label: km or miles
 // and the Average driving speed label: km/h or mph

 if (GetLocaleInfoInt(LOCALE_IMEASURE) == 0)
 {
 // Metric

 SetLabel(IDC_DISTANCE, IDS_METRIC_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, L"100");
 SetLabel(IDC_SPEED, IDS_METRIC_SPEED);
 }
 else
 {
 // US

 SetLabel(IDC_DISTANCE, IDS_US_DISTANCE);

 SetDlgItemText(IDC_SPEED_EDIT, L"65");
 SetLabel(IDC_SPEED, IDS_US_SPEED);
 }

 // Set the fine value: $500, 500 mk, etc

Multilizer Localization Guide 82

 int len = GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, NULL,
0);
 LPTSTR currStr = (LPTSTR)malloc(len + 2);

 GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SCURRENCY, currStr, len);

 wchar_t buffer[20];

 switch (GetLocaleInfoInt(LOCALE_ICURRENCY))
 {
 case 0:
 swprintf(buffer, L"%s500", currStr);
 break;

 case 1:
 swprintf(buffer, L"500%s", currStr);
 break;

 case 2:
 swprintf(buffer, L"%s 500", currStr);
 break;

 case 3:
 swprintf(buffer, L"500 %s", currStr);
 break;
 }

 SetDlgItemText(IDC_FINE, buffer);
 free(currStr);

 // Set the date and time

 SetDlgItemText(IDC_DATETIME,
COleDateTime::GetCurrentTime().Format());

 // Sets the current locale and user interface language

 SetLocaleLabel(IDC_LOCALE, LOCALE_SLANGUAGE);
 SetLabel(IDC_LANGUAGE, IDS_LANGUAGE);

 CenterWindow(GetDesktopWindow());

 return TRUE;
}

The CalculateButtonClick event needs a little bit more rewriting. Let’s study the code that
generates the driving distance message:

text = CString("The average driving time is ") +
 itoa(hours, buffer1, 10) +
 " hours and " +
 itoa(minutes, buffer2, 10) +
 " minutes.";

This seems to be just OK, but it will actually make the localization hard or even
impossible. The reason is that the above logic assumes that the message always starts
with the “The average driving time is “ string, and then contains the hours, hour label,
minutes, and minute label. However, not all languages use the same order of words in a
sentence. For example, the order might be: minute label, minutes, hour label, hours, and
text part. Reordering of the parts of the message is impossible if we use the code shown
above.

Fortunately, we can use CString’s Format function. It uses message pattern that contains
placeholders for the dynamic parameters. At run-time, the function combines the pattern
with the parameters to compose the message. Because the pattern is a single string, it

Multilizer Localization Guide 83

can be added to the resource strings, and it can then be translated as a single item. The
following code contains the internationalized CalculateButtonClick event:

void CDcalcDlg::OnCalculate()
{
 // Calculates the driving time and shows it in a message box

 CString text;
 CString distanceS;
 CString speedS;

 GetDlgItemText(IDC_DISTANCE_EDIT, distanceS);
 GetDlgItemText(IDC_SPEED_EDIT, speedS);

 int distance = atoi(distanceS);
 int speed = atoi(speedS);

 if (distanceS == "" || distance < 0)
 text.LoadString(IDS_INVALID_DISTANCE);
 else if (speedS == "" || speed <= 0)
 text.LoadString(IDS_INVALID_SPEED);
 else
 {
 int hours = distance/speed;
 int minutes = (int)(((double)distance/speed - hours)*60);

 text.Format(IDS_RESULT, hours, minutes);
 }

 CString str;

 str.LoadString(IDS_INFORMATION);

 MessageBox(text, str);
}

The dialog resource contains several strings that are obsolete because they all get set at
run-time. A good practice is to replace these strings with “dummy“ strings and then
exclude these strings from the localization project.

Figure 74: Replace dynamic items with dummy strings.

Most translations get longer when translated from English to other European languages.
The final internationalization step is to change the user interface in such a way that it can

Multilizer Localization Guide 84

accommodate long translations. The easiest way is to set every user interface item as
wide as possible. The following figure contains the reworked user interface.

Figure 75: Resize dynamic items for long translations.

We now have internationalized application’s code, and it is ready to be localized. Now it is
time to launch the Multilizer.

Create Multilizer Project
In order to localize Windows or Windows CE software, you have to create a Multilizer
project. This is described in the first part of the manual, in the chapter ‘Create Project,’ p.
11.

What you need to do is to simply let Project Wizard guide you in this.

Specify Localization options
After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful – and follow Windows suggested way of
localization – but in this tutorial, we will review the options.

Right-click the localization target in Project Tree, and click properties to see Windows
Binary File Target options.

All Windows software-specific options are gathered under the Windows Binary File Target
dialog. If there are many targets in one project, you can set different localization options
to all, if needed.

Encodings

Encodings tab lets you specify codepages for target languages. In addition, you can force
Multilizer to read the localization target with certain language and codepage settings.

Normally default values should be used; they are based on the information that Multilizer
detects from the Windows software.

Multilizer Localization Guide 85

Figure 76: Encoding options for target languages.

Output

The far most important option in localization is to specify location and type of localized
files.

Multilizer Localization Guide 86

Figure 77: Output options for localized files.

The following example figure shows the files that Multilizer uses on the C++ binary
localization process in Windows:

sample.exe sample.mpr en/sample.exe
de/sample.exe
fr/sample.exe

1 2
Application file Project file Localized application files

en/sample.ENU
de/sample.DEU
fr/sample.FRA

all/sample.exe

Figure 78: The files of the binary C++ localization process in Windows.

When deploying the application, you can either deploy the localized binary file (e.g.,
de\sample.exe), the multilingual binary file (all\sample.exe), or the original binary
file (e.g., sample.exe) and the localized resource DLL(s) (e.g., de\sample.DEU).

By default, Multilizer creates localized files. It creates subdirectories under the original file
folder containing the localized file(s). I.e., there might be subfolders called ..\en\<localized
file> and ..\fi\<localized file>.

Besides applications built with C++, Multilizer binary localization type can be applied to
applications compiled with other compilers. Multilizer automatically detects projects
compiled with Delphi, C++Builder, and Visual Basic. Refer to the corresponding tutorials,
if you localize applications with any of the aforementioned compilers.

Fonts

On Fonts tab, the user can specify the font of the localized software. Furthermore, rules
can be set to apply fonts on certain conditions.

Multilizer Localization Guide 87

Default settings are recommended, because they are strictly based on Windows
standards.

Figure 79: Font options for localized software.

Resources

On Resources tab, you can specify what kind of resources you want to localize.

Multilizer detects the resources of the Windows executable, and lets the user choose
what to localize. Typically dialogs and string resources are localized, because both
contain texts that need translation.

Multilizer Localization Guide 88

Figure 80: Specifying the resources types to localize.

Platform

Platform tab shows the target platform of the localized software. Multilizer sets the values
automatically when creating a project, so these settings shouldn’t be changed.

Multilizer Localization Guide 89

Figure 81: Specifying the platform of localized software.

Translate Project
For testing purposes, you can translate the software by using pseudo languages (C.f.
Pseudo language, p. 68); right-click language column, choose properties, and select the
pseudo language options. This will fill the translation grid with pseudo language
translations.

Wysiwyg

Besides just translating, Multilizer allows editing of UI (user interface) elements. This is
useful in cases, where the original software was not designed for localization, and
translated strings don't fit in the placeholders.

Translation with Multilizer showing visually the changes in UI is referred to as Wysiwyg in
this manual.

Multilizer Localization Guide 90

Figure 82: Localizing forms visually.

More info

Refer to the following parts of the manual for more information on translating software,
and sharing translation work between team members:

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files based on the target options (!Output, p. 85).

Finally, you can run the localized application by right-clicking the column header (e.g.,
Finnish) and by choosing Run.

Multilizer Localization Guide 91

Figure 83: Localized Dcalc application (Windows).

Localized Windows CE version should look like this:

Figure 84: Localized Dcalc application (Windows CE).

Multilizer Localization Guide 92

9
VCL Tutorial

This tutorial describes localization of Delphi and C++Builder software.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for VCL

Sample(s): <mldir>/vcl/delphi/dcalc
<mldir>/vcl/CBuilder/dcalc

Tutorial(s): –

• To learn the basics of localization of Delphi/C++Builder software and localization
prerequisites, go through the entire tutorial. It requires that you have Delphi (2-7) or
C++Builder installed on your computer.
! Introduction, p. 92.

• To learn how to use Multilizer for Delphi/C++Builder software localization, you can
localize any of the sample applications.
! Create Multilizer Project, p. 104.

Introduction
This tutorial is written for Delphi 7, and C++Builder 6. Using an older version is almost
identical. Some menu commands may vary.

Compiled VCL applications (.exe or .dll) contain resource data. When doing binary
localization, Multilizer scans the original binary files and creates localized binary files as
copies of the original files. The following picture describes the binary localization process:

French resources
German resourcesApplication

Native resources

Application
French resources

Application
German resources

Application
English resources

1 2 3

Multilizer
application

Multilizer
application

Builder or
Multilizer

Programmer ProgrammerTranslators

Project file
Translated
Project file English resources

or

Application
English resources

German resources

French resources

or

Figure 85: Binary localization process of a VCL application.

The programmer uses Multilizer to extract strings from the original binary file(s) (1).
Multilizer saves these strings to a project file. The programmer uses Multilizer to send the

Multilizer Localization Guide 93

project file to the translator(s) who uses Multilizer to translate the project file, and then
sends the translated project file back to the programmer (2). The programmer then uses
Multilizer to create localized binary files (3). As a result, there will be one resource file for
each localized language. Multilizer can also produce a single multilingual binary file
containing all the languages of the project, or one binary file for each language.

Open Tutorial Application
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. The
<mldir>\vcl\<compiler>\dcalc\dcalc.dpr contains the project file of the Dcalc
sample application. <compiler> is Delphi, or CBuilder depending on your compiler.
Compile and run the application. By default, Dcalc uses the English language.

The application should look like this:

Figure 86: Dcalc application using an English user interface.

The user interface language is English (UK) and the application formats currency, date
and time according to English (UK) standards. In the following chapters, we will turn
Dcalc into a truly multilingual application, step-by-step.

Internationalization
This chapter describes the internationalization process. Internationalization is the process
of generalizing a product so that it can handle multiple languages and cultural
conventions without the need for re-design; re-engineering source code so that products
and applications are compatible with country-specific operating systems and software.
Internationalization (I18N) takes place at the level of program design and document
development.

Open the Tutorial application,
<mldir>\<compiler>\Samples\Tutorial\dcalc.dpr.

Study the source code of the application to familiarize yourself of its behavior. It is not a
complex application, so you should get the idea fairly quickly.

The main form contains some labels that are locale dependent. The label on the right
side of the edit box contains the distance unit. Not every country uses kilometers. That’s

Multilizer Localization Guide 94

why we must update the label at run-time using a resource string, to make sure that a
correct unit is used. Similarly, we assign the screentip text of the edit control and the label
containing the current language at run-time. We could add the initialization code into the
OnCreate event of the main form but let’s prepare the run-time language switch and write
a separator function for the initialization.

Multilizer Localization Guide 95

Delphi procedure TMainForm.InitFrom;
resourcestring
 SLanguage = 'English';
 SDefault = 'Default';

 SMetricDistanceHint = 'Give the driving distance in kilometres';
 SMetricSpeedHint = 'Give the average driving speed in kilometres per
hour';
 SMetricDistanceLabel = 'in kilometres';
 SMetricSpeedLabel = 'km/h';

 SUsDistanceHint = 'Give the driving distance in miles';
 SUsSpeedHint = 'Give the average driving speed in miles per hour';
 SUsDistanceLabel = 'in miles';
 SUsSpeedLabel = 'mph';
begin
 Application.OnHint := DisplayHint;

 SpeedingFine.Caption := Format('%m', [500.0]);
 CurrentTime.Caption := DateTimeToStr(Now);

 CurrentLocale.Caption := GetLocaleStr(
 LOCALE_USER_DEFAULT,
 LOCALE_SNATIVELANGNAME,
 SDefault);

 CurrentLanguage.Caption := SLanguage;

 if GetMeasurementSystem = ivmsMetric then
 begin
 DistanceEdit.Hint := SMetricDistanceHint;
 DistanceLabel.Caption := SMetricDistanceLabel;

 SpeedEdit.Text := '100';
 SpeedEdit.Hint := SMetricSpeedHint;
 SpeedLabel.Caption := SMetricSpeedLabel;
 end
 else
 begin
 DistanceEdit.Hint := SUsDistanceHint;
 DistanceLabel.Caption := SUsDistanceLabel;

 SpeedEdit.Text := '65';
 SpeedEdit.Hint := SUsSpeedHint;
 SpeedLabel.Caption := SUsSpeedLabel;
 end;
end;

C++Builder void __fastcall TMainForm::InitForm()
{
 Application->OnHint = DisplayHint;

 SpeedingFine->Caption = Format("%m", OPENARRAY(TVarRec, (500.0)));
 CurrentTime->Caption = DateTimeToStr(Now());

 CurrentLocale->Caption = GetLocaleStr(
 LOCALE_USER_DEFAULT,
 LOCALE_SNATIVELANGNAME,
 LoadStr(SDefault));

 CurrentLanguage->Caption = LoadStr(SLanguage);

 if (GetMeasurementSystem() == ivmsMetric)
 {
 DistanceEdit->Hint = LoadStr(SMetricDistanceHint);
 DistanceLabel->Caption = LoadStr(SMetricDistanceLabel);

 SpeedEdit->Text = "100";

Multilizer Localization Guide 96

 SpeedEdit->Hint = LoadStr(SMetricSpeedHint);
 SpeedLabel->Caption = LoadStr(SMetricSpeedLabel);
 }
 else
 {
 DistanceEdit->Hint = LoadStr(SUsDistanceHint);
 DistanceLabel->Caption = LoadStr(SUsDistanceLabel);

 SpeedEdit->Text = "65";
 SpeedEdit->Hint = LoadStr(SUsSpeedHint);
 SpeedLabel->Caption = LoadStr(SUsSpeedLabel);
 }
}

The most important part of internationalization (I18N) is resourcing. This means removing
all hard coded strings from the application’s source code. Traditionally, hard coded
strings are turned into resources by moving the strings from the actual code into resource
strings.

Delphi makes this extremely easy because of its built-in support for resource strings, with
the resourcestring clause. It defines one or more resource strings. The resourcestring
block contains the resource strings used in the function. If you are not familiar with
resource strings in Delphi, refer to the VCL documentation. To put it briefly, you use them
almost exactly as you would use string constants.

With C++Builder, things are a little bit more complicated because you have to use the old-
fashioned resource scripts. The following paragraph contains the resource script header
file dcalcres.h. It specifies the ID of each resource string.

C++Builder #define SAboutMsg 0
#define SLanguage 1
#define SDefault 2

#define SMetricDistanceHint 3
#define SMetricSpeedHint 4
#define SMetricDistanceLabel 5
#define SMetricSpeedLabel 6

#define SUsDistanceHint 7
#define SUsSpeedHint 8
#define SUsDistanceLabel 9
#define SUsSpeedLabel 10

#define SInvalidDistance 11
#define SInvalidSpeed 12
#define SCalculateMsg0 13
#define SCalculateMsg1 14
#define SCalculateMsgN 15

The resource script file is shown below.

Multilizer Localization Guide 97

C++Builder #include "dcalcres.h"

STRINGTABLE
BEGIN
 SAboutMsg "Dcalc is a multilingual application that calculates the
average driving time";
 SLanguage "English";
 SDefault "Default";

 SMetricDistanceHint "Give the driving distance in kilometres";
 SMetricSpeedHint "Give the average driving speed in kilometres per
hour";
 SMetricDistanceLabel "in kilometres";
 SMetricSpeedLabel "km/h";

 SUsDistanceHint "Give the driving distance in miles";
 SUsSpeedHint "Give the average driving speed in miles per hour";
 SUsDistanceLabel "in miles";
 SUsSpeedLabel "mph";

 SInvalidDistance "\"%s\" is not a valid distance!";
 SInvalidSpeed "\"%s\" is not a valid speed!";
 SCalculateMsg0 "The average driving time is %d minutes.";
 SCalculateMsg1 "The average driving time is one hour and %d minutes.";
 SCalculateMsgN "The average driving time is %0:d hours and %1:d
minutes.";
END

The second code section in the beginning section of the IniForm function formats the
speed and time in locale independent ways. The Format and DateTimeToStr functions
convert the value to a string value using the formatting rules of the current locale.

The next code section sets the caption of the current locale label to match the current
locale. The name is given in the native language of the locale.

The next code section sets the caption of the current language label to match the current
language. The SLanguage resource string contains the name of the language in its native
language (e.g., English, Deutch, suomi, svenska, etc).

The last code section sets the initial values, labels, and screentips for distance and
speed. The metric system uses kilometers and km/h. The US system uses miles and
mph. Unit IvI18N contains the GetMeasurementSystem function that returns the
measurement system of the current locale.

To do the first initialization, we call the initialization function from the OnCreate event.

Delphi procedure TMainForm.FormCreate(Sender: TObject);
begin
 InitForm;
end;

C++Builder void __fastcall TMainForm::FormCreate(TObject *Sender)
{
 InitForm();
}

The CalculateButtonClick event needs a little bit more rewriting. Let’s study the code that
generates the driving distance message:

Multilizer Localization Guide 98

Delphi 'The average driving time is ' + IntToStr(hours) + ' hours and ' +
IntToStr(minutes) + ' minutes.',

C++Builder "The average driving time is " + IntToStr(hours) + " hours and " +
IntToStr(minutes) + " minutes.",

This seems to be just ok, but it will actually make the localization hard or even impossible.
The reason is that the above logic assumes that the message always starts with the “The
average driving time is “ string, and then contains the hours, hour label, minutes, and the
minute label. However, not all languages use the same order of words in a sentence. For
example, the order might be: minute label, minutes, hour label, hours, and the text string.
Reordering of the parts of the message is impossible if we use the code shown above.

Fortunately, we can use VCL’s Format function. It uses message pattern that contains
placeholders for the dynamic parameters. At run-time, the function combines the pattern
with the parameters to compose the message. Because the pattern is a single string, it
can be added to the resource strings, and it can then be translated as a single item. The
above code after the internationalization is:

Delphi Format(SCalculateMsg, [hours, minutes]),

C++Builder Format(LoadStr(SCalculateMsg), OPENARRAY(TVarRec, (hours, minutes))),

SCalculateMsg is the pattern, and the hours and minutes are parameters.

The next step is to internationalize the calculate event. The following line of code contains
the Calculate event:

Multilizer Localization Guide 99

Delphi procedure TMainForm.CalculateButtonClick(Sender: TObject);
resourcestring
 SInvalidDistance = '"%s" is not a valid distance!';
 SInvalidSpeed = '"%s" is not a valid speed!';
 SCalculateMsg0 = 'The average driving time is %d minutes.';
 SCalculateMsg1 = 'The average driving time is one hour and %d
minutes.';
 SCalculateMsgN = 'The average driving time is %0:d hours and %1:d
minutes.';
var
 str: String;
 distance, speed, hours, minutes: Integer;
begin
 distance := StrToIntDef(DistanceEdit.Text, -1);
 if distance < 0 then
 begin
 MessageDlg(
 Format(SInvalidDistance, [DistanceEdit.Text]),
 mtError,
 [mbOK],
 0);
 DistanceEdit.SetFocus;
 Exit;
 end;

 speed := StrToIntDef(SpeedEdit.Text, -1);
 if speed <= 0 then
 begin
 MessageDlg(
 Format(SInvalidSpeed, [SpeedEdit.Text]),
 mtError,
 [mbOK],
 0);
 SpeedEdit.SetFocus;
 Exit;
 end;

 if GetMeasurementSystem = ivmsUS then
 begin
 distance := Trunc(MILE_IN_METERS*distance/1000);
 speed := Trunc(MILE_IN_METERS*speed/1000);
 end;

 hours := distance div speed;
 minutes := Round(60*(distance mod speed)/speed);

 case hours of
 0: str := Format(SCalculateMsg0, [minutes]);
 1: str := Format(SCalculateMsg1, [minutes]);
 else
 str := Format(SCalculateMsgN, [hours, minutes]);
 end;

 MessageDlg(str, mtInformation, [mbOK], 0);
end;

C++Builder void __fastcall TMainForm::CalculateButtonClick(TObject *Sender)
{
 int distance = StrToInt(DistanceEdit->Text);
 if (distance < 0)
 {
 MessageDlg(
 Format(
 LoadStr(SInvalidDistance),
 OPENARRAY(TVarRec, (DistanceEdit->Text))),
 mtError,
 TMsgDlgButtons() << mbOK,
 0);

Multilizer Localization Guide 100

 DistanceEdit->SetFocus();
 return;
 }

 int speed = StrToInt(SpeedEdit->Text);
 if (speed <= 0)
 {
 MessageDlg(
 Format(
 LoadStr(SInvalidSpeed),
 OPENARRAY(TVarRec, (SpeedEdit->Text))),
 mtError,
 TMsgDlgButtons() << mbOK,
 0);
 SpeedEdit->SetFocus();
 return;
 }

 if (GetMeasurementSystem() == ivmsUS)
 {
 distance = MILE_IN_METERS*distance/1000;
 speed = MILE_IN_METERS*speed/1000;
 }

 int hours = distance/speed;
 int minutes = float(60)*(distance%speed)/speed;

 AnsiString str;

 switch (hours)
 {
 case 0:
 str = Format(LoadStr(SCalculateMsg0), OPENARRAY(TVarRec,
(minutes)));
 break;

 case 1:
 str = Format(LoadStr(SCalculateMsg1), OPENARRAY(TVarRec,
(minutes)));
 break;

 default:
 str = Format(LoadStr(SCalculateMsgN), OPENARRAY(TVarRec, (hours,
minutes)));
 }

 MessageDlg(str, mtInformation, TMsgDlgButtons() << mbOK, 0);
}

The hard coded error message has been replaced with the Format message.

If the selected locale uses miles instead of kilometers, we have to treat the value in the
edit box as miles. Then we also have to convert distance from miles to kilometers before
calculating the driving time. It is always a good idea to internally use the metric system
and convert the input and output to the US system when application is run on a US
locale, because that makes the calculations easier.

After we have calculated the average driving speed, we have to show it to the user. As
described previously, we are going to use the Format function and message patterns.
However, we want to make the message grammatically correct. That’s why we need
three message patterns. The first one is for the case when the time is less than an hour,
another for the case when the time is between one and two hours, and last for the case
when the time is two hours or more. This is because in most languages the single and
plural forms are handled in different ways. For example, “one hour” vs. “two hours.”

Multilizer Localization Guide 101

The following figure contains the message when the time is less than one hour. Note that
there is no hour string present.

Figure 87: Message displayed when time is less than 1 hour.

The following figure contains the message when the time is more than one hour but less
than two hours. Note that the value for hour is not given as a number but written in letters.

Figure 88: Message displayed when time is 1 hour.

The following figure contains the message when the time is more than two hours. Both
hours and minutes are shown as numbers and in plural form.

Figure 89: Message displayed when time is more than 1 hour.

Even this solution is not perfect because:

• There might be a language that has a specific word for two hours. The above
logic assumes that only 0, 1, and 2 or more are handled each in different ways.

• We should use the same logic for minutes as well, but this would require 3 by 3
equals 9 message patterns.

The final task left is to resource the message used in the about box:

Multilizer Localization Guide 102

Delphi procedure TMainForm.AboutMenuClick(Sender: TObject);
resourcestring
 SAboutMsg = 'Dcalc is a multilingual application that calculates the
average driving time';
begin
 MessageDlg(SAboutMsg, mtCustom, [mbOK], 0);
end;

C++Builder void __fastcall TMainForm::AboutMenuClick(TObject *Sender)
{
 MessageDlg(
 LoadStr(SAboutMsg),
 mtCustom,
 TMsgDlgButtons() << mbOK,
 0);
}

Because we set many property values dynamically at run-time, the original design time
values in the form files become obsolete. They cause no harm, but it makes the
translator’s job easier if we remove them. We could set those values to empty, but this
would make it harder to edit the form files because the labels would no longer be visible.
A good solution is to set all dynamic visible property values to “dummy.“

Figure 90: The internationalized Dcalc form on Delphi IDE.

Now the Dcalc application has been internationalized. Compile and run it to see that it
works before moving on.

Multilizer Localization Guide 103

Figure 91: The internationalized Dcalc application running with Finnish locale.

This simple internationalization demonstrates three of the most important issues to take
into consideration in internationalization: resourcing, dynamic messages, and unit
conversions. There are quite many other things that you need to know about
internationalization as well. Refer to Delphi’s online help and/or an I18N book to get more
information about internationalization.

Run-time language switch

The final task is to implement run-time language switch. This can be done if the resource
DLLs are used. Add Language... menu to the File menu and write the following code:

Delphi procedure TMainForm.LanguageMenuClick(Sender: TObject);
begin
 if SelectResourceLocale then
 begin
 InitForm;
 SetCurrentDefaultLocaleReg;
 end;
end;

C++Builder void __fastcall TMainForm::LanguageMenuClick(TObject *Sender)
{
 if (SelectResourceLocale())
 {
 InitForm();
 SetCurrentDefaultLocaleReg();
 }
}

The SelectResourceLocale function shows a dialog box that shows the available
resource language and loads the selected resource DLL. This will remove all run-time
modifications of the forms. That’s why we have to call the InitForm function again. Finally,
we save the selected language to the system registry.

When starting the application, VCL is going to select the resource DLL matching to the
current locale settings of the user. We want better control over the initial language. The
first choice would be a command line parameter (e.g., dcalc.exe en_US). If that is not
present, then we would like to use the previous language stored in the system registry
under the HKEY_CURRENT_USER\Software\Borland\Locales key. This registry key is
the built-in feature of VCL. Only if that does not exist, we would like to use the default
language. Add the following code in the initialization part of the main form:

Multilizer Localization Guide 104

Delphi var
 locale: Integer;
initialization
 if GetCommandLineLocale(locale) then
 SetNewResourceDll(locale);
end;

C++Builder WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
 try
 {
 int locale;
 if (GetCommandLineLocale(locale))
 SetNewResourceDll(locale);

 Application->Initialize();
 Application->CreateForm(__classid(TMainForm), &MainForm);
 Application->Run();
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 return 0;
}

Enable DRC generation in Delphi

We will perform one more task to make the localization easier. When using the
resourcestring clause, Delphi puts the strings to the string resources automatically.
However, it does not let you choose what string ids will be used. In addition, Delphi will
most likely change those ids next time you compile your application. What remains
constant are the resource string names (e.g., SInvalidDistance). Unfortunately, the
compiled binary file (.exe or .dll) does not contain the resource string name but only the
string ids. Fortunately, it is possible to make Delphi create a resource string file that
contains all the resource string’s name and ids used by the application. To create such a
file, open a Delphi project, choose Project | Options, select the Linker tab, and check
Detailed in the Map file radio group. Rebuild the application by choosing Project | Build
DCalc. Delphi generates the resource string file called dcalc.drc.

Create Multilizer Project
In order to localize Windows software developed with Delphi/C++Builder, you have to
create a Multilizer project. This is described in the first part of the manual, in the chapter
‘Create Project,’ p. 11.

Delphi-specific settings

For Delphi localization projects, Project Wizard will display one extra page with target-
specific information. At a minimum, the user should specify here the location of the
Delphi-project and DRC-file, if available. This and other Delphi-specific settings are
discussed in the next chapter.

Multilizer Localization Guide 105

Figure 92: Delphi-specific settings for VCL binary target.

Integrated Translation Environment

If you have previously used Borland Integrated Translation Environment (ITE) to localize
your application, the following message box will appear in Project Wizard:

Figure 93: Message box telling that there are existing ITE translations.

Press Yes to import the initial languages and translations from ITE-generated resource
DLLs. From now on you do not have to use ITE anymore. You can delete ITE directories,
projects files, and project groups.

Specify Localization options
After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful – and follow Delphi/C++Builder suggested
way of localization – but in this tutorial, we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

All Delphi-specific options are gathered under the Delphi Target dialog. If there are many
targets in one project, you can set different localization options to all, if needed.

Multilizer Localization Guide 106

Project

Figure 94: Delphi target options.

Project file name

Project file refers to the Delphi project from which the executable was compiled. If the
project file is specified, Multilizer is able to automatically resolve visual inheritance of the
software. This enables visual inheritance in the Multilizer project, which minimizes
translation work and maximizes translations consistency.

DRC file name

DRC-file is needed to resolve Delphi resource string names. If DRC-file is specified,
Multilizer will assign resourcestring constant names to the localization context. In
addition, the context will include the name of the unit, where resourcestring is defined.

If DRC-file is not specified, Multilizer uses resource id (integer) as the context. Because
Delphi-compiler changes these ids on re-compilation of the software, localization context
changes, which can result in loss of translations.

DRC-file is created by Delphi compiler (! Enable DRC generation in Delphi, p. 104).

Options

Scan images from the form data enables Multilizer to scan images (glyphs) from form
resource data. Most VCL components with images store the bitmaps in form data, and
checking this option enables localization of them.

Multilizer Localization Guide 107

Check scaled property enables Multilizer to ensure that scaled property of forms is set to
false. This prevents VCL from scaling the form during run-time, which occurs if a different
script is applied than on design-time.

Set BiDi Mode Property enables Multilizer to set the BiDi Mode Property for RTL (Right-
to-Left) languages.

Write Wide strings enables Multilizer to write strings using Unicode encoding. If this
option is unchecked, strings are written using the encoding as in the original form.

Encodings

Encodings tab lets you specify codepages for target languages. In addition, you can force
Multilizer to read the localization target with certain language and codepage settings.

Normally default values should be used; they are based on the information that Multilizer
detects from the Windows software.

Figure 95: Encodings for target languages.

Output

The far most important option in localization is to specify location and type of localized
files.

Multilizer Localization Guide 108

Figure 96: Output options for localized Delphi software.

The following figure shows the files that Multilizer uses in the binary localization process
of a VCL application:

sample.exe sample.mpr en/sample.exe
de/sample.exe
fr/sample.exe

1 2
Application file Project file Localized application files

sample.EN
sample.DE
sample.FR

all/sample.exe

Figure 97: The files of the binary localization process of a VCL application

When deploying the application, you can either deploy the original application file with the
selected resource file(s), the localized application file(s), or the multilingual application
file.

By default, Multilizer creates resource files. This is the way of localizing
Delphi/C++Builder recommended by Borland.

If you choose Resource files, you can enable run-time language switching in the software
(! Internationalization, p. 93).

Fonts

On Fonts tab, the user can specify the font of the localized software. Furthermore, rules
can be set to apply fonts on certain conditions.

Default settings are recommended, because they are strictly based on Windows
standards.

Multilizer Localization Guide 109

Figure 98: Font options for localized software.

IME

IME (Input Method Editor) settings specify the input method editor (IME) to use for
converting keyboard input to Asian language characters.

Multilizer Localization Guide 110

Figure 99: IME options for software localized to Far Eastern languages.

The IME settings here will apply corresponding value to IMEMode property in the
software localized to Chinese, Japanese, and Korean.

Resources

On Resources tab, you can specify what kind of resources you want to localize. Multilizer
detects the resources of the executable, and lets the user choose what to localize.

Multilizer Localization Guide 111

Figure 100: Specifying the resources to be localized.

In Delphi and C++Builder projects, forms are stored in form resource. Therefore, at least
Form resource and String resource should be checked, in order to localize the texts of the
software.

VCL components store a lot of non-localizable data in strings (string properties). Multilizer
excludes a lot of this kind of strings automatically by applying rules based on component
names and properties. These settings are configurable (! Excluding Properties from
localization, p. 113).

Translate Project
For testing purposes, you can translate the software by using pseudo languages (C.f.
Pseudo language, p. 68); right-click language column, choose properties, and select the
pseudo language options. This will fill the translation grid with pseudo language
translations.

Wysiwyg

Besides just translating, Multilizer allows editing of UI (user interface) elements. This is
useful in cases, where original software was not designed for localization, and translated
strings don't fit in the placeholders.

Translation with Multilizer showing visually the changes in UI is referred to as Wysiwyg in
this manual. Wysiwyg is enabled both in forms editing as well as menu editing, as shown
in the following images:

Multilizer Localization Guide 112

Figure 101: Localizing Delphi forms visually in Multilizer.

Figure 102: Localizing menus visually.

More info

Refer to the following parts of the manual for more information on translating software,
and sharing translation work between team members:

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

Multilizer Localization Guide 113

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files based on the target options (! Output, p. 107).

Finally, you can run the localized application by right-clicking the column header (e.g.,
Finnish) and by choosing Run.

Figure 103: Running localized software.

Excluding Properties from localization
Not all string properties are intended for localization. Localization of them can even result
in a crash of the software. In order to prevent this from happening, Multilizer excludes by
default some of the string properties.

In order to exclude strings from localization, you can:

• Specify what string-type properties are excluded for a VCL component

• Specify what properties are always excluded

These settings will prevent Multilizer from adding them in the localization project.

The settings discussed here affect the way that Multilizer scans form resource data.

Exclude properties by components

To exclude properties by components, choose Tools!!!!Options…, select Delphi and
C++Builder, Components.

Multilizer Localization Guide 114

Figure 104: Excluding properties by components in VCL binary localization.

This dialog lets you specify the excluded properties of specific components. You can
specify one or more properties that are excluded from scanning for each component.

This dialog is also used to configure the visual representation of each component
(!Visual Representation, p. 115).

Exclude properties by name

To exclude properties by name, choose Tools!!!!Options…, select Delphi and
C++Builder, Excluded properties.

Figure 105: Excluding properties by name in VCL binary localization.

This dialog lets you specify the properties that are not localized.

Multilizer Localization Guide 115

Visual Representation
Delphi and C++Builder are component-based RAD (Rapid Application Development)
programming environments, where user interfaces are designed with components.

There are tens of standard components, and more than a thousand of third-party
components. In order to display any component correctly, Multilizer allows users to
configure the visual representation of any VCL component.

All standard VCL components and most common 3rd-party components are defined
already.

Components whose visual representation is not defined are shown with yellow
placeholders in Wysiwyg.

Figure 106: Visual form editor with an unknown VCL component.

To exclude properties by components, choose Tools!!!!Options…, select Delphi and
C++Builder, Components. Choose Add.. to add new component.

Figure 107: Specifying visual representation for VCL control.

Write the component name as specified in Delphi/C++Builder. Choose from Graph the
appropriate representation; a preview is shown automatically.

Multilizer Localization Guide 116

After the next re-scan of project selected, visual representation is applied in Wysiwyg, as
shown in the next picture.

Figure 108: Visual Editor recognizing all VCL controls.

Visual Representation configurations can be shared between team members; you can
both import and export the settings as Multilizer item files.

Multilizer Localization Guide 117

10
.NET Tutorial

This tutorial describes localization of .NET software.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET

Sample(s): <mldir>/NET/Dcalc/cs/
<mldir>/NET/Dcalc/vb/

Tutorial(s): <mldir>/NET/Tutorial/cs/
<mldir>/NET/Tutorial/vb/

• To learn the basics of localization of .NET software and localization prerequisites, go
through the entire tutorial. It requires that you have Visual Studio .NET installed on
your computer.
! Introduction, p. 117.

• To learn how to use Multilizer for .NET software localization, you can localize any of
the sample application.
! Create Multilizer Project, p. 128.

Introduction
.NET software includes localizable data in resource files (ResX, TXT). Multilizer localizes
these resources.

In order to simplify localization, Multilizer supports localization of

• Visual Studio .NET Solutions,

• Visual Studio .NET projects,

• C#Builder and Delphi 8 Project Groups

• C#Builder and Delphi 8 Projects

Localizing any of abovementioned Solutions, Projects, or Project Groups makes Multilizer
pick all localizable resources automatically; without support for this, user would need to
do this manually.

This tutorial is written for Visual Studio .NET; both C# and Visual Basic code samples are
included.

Multilizer Localization Guide 118

Localization of Visual Studio .NET software
Multilizer localizes Visual Studio Solutions, Visual Studio Projects, and .NET resources.

VS .NET Solution
*.SLN

C# Project
*.csproj

VB .NET Project
*.vbproj

Visual J# Project
*.vjsproj

Smart Device
Application;
C# Project
*.csdproj

Smart Device
Application;

VB. NET Project
*.vbdproj

ResX
Resources

TXT
Resources

ResX
Resources

TXT
Resources

ResX
Resources

TXT
Resources

ResX
Resources

TXT
Resources

ResX
Resources

TXT
Resources

Localize
VS Solutions

Localize
VS.NET
Projects

Localize
.NET
Resources

Figure 109: Visual Studio .NET file hierarchy.

Localization of Visual Studio .NET solutions

Visual Studio .NET introduced the concept of Software Solution: each solution contains
any number of Visual Studio .NET projects. While .NET projects are programming
language dependent, solutions are not.

Multilizer supports the localization of a .NET solution. It detects all projects in the solution,
and from each project it detects the localizable resoures.

By localizing a solution with Multilizer, user doesn’t need to pick localizable resources
manually, but Multilizer finds them automatically and adds them in Multilizer project. All
translation and other localization work is done conveniently in Multilizer.

When creating localized versions, Multilizer again takes care of creating all localized files
required in the .NET Solution.

Localization of Visual Studio .NET projects

Visual Studio .NET projects contain the resource data in the resource files (e.g. .resx or
.txt). Multilizer creates the localized resource files from the original files. The following
picture describes the localization process.

Multilizer Localization Guide 119

Visual Studio .NET
project file

French resource
or satelite files

Germanresource
or satelite files

English resource
or satelite files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 110: Visual Studio .NET project file localization process.

The programmer uses Multilizer to extract strings from the original resource file(s)
belonging to the project (1). Multilizer saves these strings to the project file. The
programmer sends the project file to the translator(s) that use Multilizer to translate the
project file (2). The programmer uses Multilizer or Builder to create the localized resource
files and/or the localized satellite assembly files (3). As a result there will be one resource
file or one satellite assembly file for each localized language.

Multilizer creates subdirectories under original project file folder containing the localized
satellite assembly files. I.e. there might be subfolders called
..\en\MySample.resources.dll (English) and
..\fi\MySample.resources.dll (Finnish).

When deploying the application you can either deploys the original application file with
the localized satellite assembly (e.g. de\MySample.resources.dll), or you can link
the localized resource file (e.g. MySample.de.resources) to the original application
file.

The following example figure shows the files that Multilizer uses on the Visual Studio
.NET project file localization process.

sample.csproj sample.mpr sample.en.resx
sample.de.resx
sample.fr.resx

sample.en.resources
sample.de.resources
sample.fr.resources

1 2 3
VS.NET Project file Project file ML creates localized files ML compiles the localized files

en\sample.resources.dll
de\sample.resources.dll
fr\sample.resources.dll

4
ML creates the satelite files

Figure 111: The files of the Visual Studio .NET project file localization process.

Using this localization process Multilizer globalizes the resources of any .NET application.

Localization of Delphi 8 / C#Builder software
Multilizer localizes .NET projects and project groups of Borland® Delphi 8 and C#Builder.
Thus instead of working with individual ResX resources, you work with the same project
and project group concept as in Borland .NET development tools.

Multilizer Localization Guide 120

C#Builder
Project Group

*.bdsgroup

C#Builder Project
*.bdsproj

Delphi 8 Project
*.bdsproj

ResX
Resources

TXT
Resources

ResX
Resources

TXT
Resources

Localize
.NET Project
Groups

Localize
Delphi8/
C#Builder
Projects

Localize
.NET
Resources

Delphi 8
Project Group

*.bdsgroup

Figure 112: Borland Delphi 8/C#Builder file hierarchy.

Localization of Delphi 8 / C#Builder project groups

Multilizer supports the localization of Delphi 8 / C#Builder project groups.

Multilizer detects all projects in the project group, and from each project it detects the
localizable resources.

By localizing a project group with Multilizer, user doesn’t need to pick localizable
resources manually, but Multilizer finds them automatically and adds them in Multilizer
project. All translation and other localization work is done conveniently in Multilizer.

When creating localized versions, Multilizer again takes care of creating all localized files
required in the project group.

Localization of Delphi 8 and C#Builder projects

Delphi 8 and C#Builder projects contain the resource data in the resource files (e.g.
.resx or .txt). Multilizer creates the localized resource files from the original files.

Using this localization process Multilizer globalizes the resources of any Delphi 8 or
C#Builder application.

Localization of .NET resources
If you do not use Visual Studio .NET, C#Builder or Delphi 8 but the command line tools of
the .NET SDK or some other .NET development tool, you have to use the resource file
localization process.

The following picture describes the localization process of .NET resources.

Multilizer Localization Guide 121

.NET
resource file

French
resourcefiles

German
resource files

English
resource files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 113: .NET resource file localization process.

Programmer uses Multilizer to extract localizable data from the original resource file(s)
(1). Multilizer saves them to the project file. The programmer sends the project file to the
translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource files (3). As a result there will be one
resource file for each localized language.

When deploying the application you can either link the localized resource file (e.g.
MySample.de.resources) to the original application file or create a satellite assembly
file containing the localized resource file(s).

The following example figure shows the files that Multilizer uses on the .NET resource file
localization process.

sample.resx
or
sample.txt

sample.mpr sample.en.resx
sample.de.resx
sample.fr.resx

sample.en.resources
sample.de.resources
sample.fr.resources

1 2 3
Resource file Project file ML creates localized files ML compiles the localized files

Figure 114: The files of the .NET resource file localization process.

Using this localization process Multilizer globalizes all localizable data from the .NET
resource files (.resx) and strings found from the text resource files (.txt).

Open Tutorial Application
We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize.
<mldir>\NET\Tutorial\cs\Dcalc.csproj (C#) and
<mldir>\NET\Tutorial\vb\Dcalc.vbproj (Visual Basic)
contain the project file of the Dcalc sample application. Compile and run the application.
By default, Dcalc uses English language.

The application should look like this:

Multilizer Localization Guide 122

Figure 115: Dcalc application using an English user interface.

This version of Dcalc is not internationalized and many of the locale-dependent features
are hard-coded. For example the currency symbol is always pounds, distances are given
in kilometers and speed in kilometers per hours.

Internationalization
Microsoft .NET localization model is based on localizing resources. This means that
before localizing the software, all culture (locale) dependent data must be separated from
the code and put in resource files. This is called internationalization. Internationalization
tasks are discussed more in detail in chapter Overview.

Internationalization of forms

Internationalization of forms is easy, because .NET generates automatically the source
code for them. To internationalize a form, you just need to set the Localizable property of
the form to true. .NET will automatically create a resource file (.resx) for the forms
elements and create the code that references to it.

Figure 116: To localize the form set the Localizable property to true.

Multilizer Localization Guide 123

Internationalization of code

If there are hard-coded strings in the user-written part of code, you have to do the
internationalization manually. You will need to create a resource file for strings, and call
the internationalized strings from your code.

The first step is to create a resource file for the string. Choose Project | Add New Item
from the Visual Studio .NET. From the Template list select Assembly Resource File.
Rename the file to Resource.resx. Finally press the Open button to create the file.
Visual Studio .NET creates an empty resource file.

Let’s add a string to the resource file. Double click Resource.resx from the Solution
Explorer tree. This opens the resource table editor. Type “Language” to the first row of
the name column and “English” to the value column. This adds one row the file where
“Language” is the key and “English” is the translation.

Figure 117: Resource file after adding the first item.

During this internationalization process we are going to add several new items to the
resource file.

To access the resource file during run-time we have to add a Resource Manager object
to the application. Add the following lines to the MainForm class.

C# public class MainForm : System.Windows.Forms.Form
{
 private ResourceManager rm;
 ...
}

...

private void MainForm_Load(object sender, System.EventArgs e)
{
 rm = new ResourceManager("Dcalc.Resource", this.GetType().Assembly);
 ...
}

Visual Basic Public Class mainform
 Inherits System.Windows.Forms.Form

 Dim rm As New Resources.ResourceManager("Dcalc.Resource",
GetType(mainform).Assembly)
 ...
End Class

The rm object is used to get translation from the resource file.

Hard-coded strings

Open the Click event of the aboutMenu. It contains two hard coded strings. To remove
the hard coding we have to add the string to the resource file and replace the direct
access to the string by the access to the resource file.

Add both strings to the resource file and wrap them by the rm.GetString method.

Multilizer Localization Guide 124

C# private void aboutMenu_Click(object sender, System.EventArgs e)
{
 MessageBox.Show(
 rm.GetString("Dcalc is a multilingual application that calculates the
average driving time"),
 rm.GetString("About Dcalc"),
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

Visual Basic Private Sub AboutMenu_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AboutMenu.Click
 MsgBox(rm.GetString("Dcalc is a multilingual application that
calculates the average driving time"), vbOKOnly, rm.GetString("About
Dcalc"))
End Sub

Format strings

If you look at the calculate event you will see that the following lines are used to format
the message string that show the driving time to the user.

C# MessageBox.Show(
 "The avarage driving time is " + Convert.ToString(hours) + " hours and
" +
 Convert.ToString(minutes) + " minutes.",
 "Driving time",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

Visual Basic MsgBox("The average driving time is " + Convert.ToString(hours) + " hours
and " + Convert.ToString(minutes) + " minutes", vbOKOnly, "Driving time")

The above code contains both hard coded string and bad design. First of all the message
is split into several string that do not contain a real sentence. That’s why it is hard to
translate them. Also the code assumes that the word order is text plus hours plus some
other text plus minutes plus some other text. This works with English but may not work
with some other language. That’s why we have to use the Format method of the String
class. It uses a message pattern and variables.

C# MessageBox.Show(
 String.Format(
 rm.GetString("The avarage driving time is {0} hours and {1}
minutes."),
 Convert.ToString(hours),
 Convert.ToString(minutes)),
 rm.GetString("Driving time"),
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

Visual Basic MsgBox(String.Format(rm.GetString("The average driving time is {0} hours
and {1} minutes"), hours, minutes), vbOKOnly, rm.GetString("Driving
time"))

The calculate event shows a message if the distance value is invalid. It also contains
hard coded string and a dynamic message.

Multilizer Localization Guide 125

C# MessageBox.Show(
 distanceText.Text + " is not a valid distance!",
 "Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

Visual Basic MsgBox(distanceText.Text + " is not a valid distance!", vbOKOnly,
"Error")

Use the same approach as with the result message.

C# MessageBox.Show(
 String.Format(
 rm.GetString("{0} is not a valid distance!"),
 distanceText.Text),
 rm.GetString("Error"),
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

Visual Basic MsgBox(String.Format(rm.GetString("{0} is not a valid distance!"),
DistanceText.Text), vbOKOnly, rm.GetString("Error"))

Resource the message box for the invalid speed in the same way.

Culture-specific issues

The Load event initializes some user interface items such as the speeding fine label and
the current time label.

C# private void MainForm_Load(object sender, System.EventArgs e)
{
 speedingFine.Text = "£500";
 currentTime.Text = DateTime.Now.ToString();
}

Visual Basic Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 speedingFine.Text = "£500"
 currentTime.Text = DateTime.Now.ToString()
End Sub

The current time is properly formatted. The ToString method converts the time to a string
using the default formatting rules of the current culture. However the fine is hard code to
£500. It can be fixed using the int.ToString method.

In US miles are used instead of kilometers. The code below checks if the current culture
is English (US). If it is the labels and initial values are set to US system. Otherwise the
metric system is used.

Multilizer Localization Guide 126

C# private void MainForm_Load(object sender, System.EventArgs e)
{
 rm = new ResourceManager("Dcalc.Resource", this.GetType().Assembly);

 int fine = 500;
 speedingFine.Text = fine.ToString("C");
 currentTime.Text = DateTime.Now.ToString();

 currentLocale.Text = CultureInfo.CurrentCulture.NativeName;
 currentLanguage.Text = rm.GetString("Language");

 if (Application.CurrentCulture.LCID == 0x0409)
 {
 distanceLabel.Text = rm.GetString("in miles");
 speedLabel.Text = rm.GetString("mph");
 distanceText.Text = "100";
 speedText.Text = "55";
 }
 else
 {
 distanceLabel.Text = rm.GetString("in kilometres");
 speedLabel.Text = rm.GetString("km/h");
 distanceText.Text = "120";
 speedText.Text = "100";
 }
}

Visual Basic Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 SpeedingFine.Text = FormatCurrency(500)
 CurrentTime.Text = FormatDateTime(Now)

 CurrentLocale.Text = Application.CurrentCulture.NativeName()
 CurrentLanguage.Text = rm.GetString("Language")

 If Application.CurrentCulture.LCID = &H409 Then
 DistanceLabel.Text = rm.GetString("in miles")
 SpeedLabel.Text = rm.GetString("mph")

 DistanceText.Text = "100"
 SpeedText.Text = "55"
 Else
 DistanceLabel.Text = rm.GetString("in kilometres")
 SpeedLabel.Text = rm.GetString("km/h")

 DistanceText.Text = "120"
 SpeedText.Text = "100"
 End If
End Sub

Now we have fully internationalized the source code. Make sure that you added every
single string inside the rm.GetString method to the resource file.

Determine startup language at command-line

In order to test different locale we add one command line parameter to the application.
The parameter -lang:id, where id is the culture identifier that specifies the culture that
the application uses.

This parameter is passed from Multilizer when running localized version of the software
from within Multilizer. The parameter to pass from Multilizer can be altered from target
settings.

Multilizer Localization Guide 127

C# static void Main(string[] args)
{
// The application can have a command line parameter that specifies the
culture
 bool found = false;
 if (args.Length > 0)
 {
 for (int i = 0; i < args.Length; i++)
 {
 string str = args[i];
 int index = str.IndexOf("-lang:");

 if (index == 0)
 {
 str = str.Remove(0, 6);

 if (str != "")
 {
 CultureInfo ci = new CultureInfo(str);
 Thread.CurrentThread.CurrentUICulture = ci;
 if (!ci.IsNeutralCulture)
 Thread.CurrentThread.CurrentCulture = ci;
 }

 found = true;
 break;
 }
 }
 }

 if (!found)
 Thread.CurrentThread.CurrentUICulture = CultureInfo.CurrentCulture;

 Application.Run(new MainForm());
}

Multilizer Localization Guide 128

Visual Basic Public Sub New(ByVal culture As String)
 If culture <> "" Then
 Try
 Thread.CurrentThread.CurrentUICulture = New CultureInfo(culture)
 Catch e As ArgumentException
 MessageBox.Show(Me, e.Message, "Bad command-line argument")
 End Try
 End If

 InitializeComponent()
End Sub

<System.STAThreadAttribute()> _
Public Shared Sub Main()
 '
 ' Main takes an optional argument identifying the culture you'd like
displayed.
 '
 Dim args() As String = System.Environment.GetCommandLineArgs()
 Dim i
 Dim str As String
 Dim strCulture As String = ""
 If args.Length > 0 Then
 For i = 0 To args.Length - 1
 str = args(i)
 If str.IndexOf("-lang:") = 0 Then
 str = str.Remove(0, 6)
 If str <> "" Then
 strCulture = str
 End If
 End If
 Next
 End If
 Application.Run(New mainform(strCulture))
End Sub

Miscellaneous

Add icon

In order to be able to localize icons, software must not use .NET default icon; specifying
an icon other than the default one will make it possible to localize the icon later with
Multilizer application.

Unicode

Although not related to internationalization, .NET support for Unicode® improves
localization quality. There are no more code-page related issues, such as non-readable
characters appearing in the software.

Create Multilizer Project
In order to localize .NET software, you have to create a Multilizer project. This is
described in the first part of the manual, chapter Create Project, p. 11.

Specify Localization options
After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful, but in this tutorial we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

Multilizer Localization Guide 129

All .NET-specific options are gathered under the corresponding target dialog. If there are
many targets in one project, you can set different localization options to all, if needed.

Encodings

Encodings tab shows the languages of project. Because .NET is Unicode-based, the only
encoding for all languages is UTF-8. All .NET ResX resources are UTF-8 encoded.

Figure 118: Encodings for localized software.

Multilizer Localization Guide 130

Project

Figure 119: .NET Localization options

Options

Scan images from the form data enables all pictures embedded in the form resources to
be scanned.

Set RightToLeft property affects localization of RTL (right-to-left) languages; this property
affects how texts are aligned in its placeholder. Having this feature checked ensures that
text alignment is mirrored when localization to RTL-languages, such as Hebrew and
Arabic.

Assembly options

Check ‘Create the satellite assemblies’, if you want that Multilizer creates the satellite dll’s.
In order to do this, you have to specify the paths to Assembly Linker and Resource
Generator (! Specify .NET tools location, p. 136). If this option is not checked, Multilizer
creates localized resource files.

Check ‘Private resources in the satellite assemblies’, if you want that generated
resources are not visible to other assemblies.

Resource file options

When Multilizer creates localized satellite assemblies, there are a lot of intermediary files
created. By checking both options here, all intermediary files created by Multilizer will be
deleted after build.

Multilizer Localization Guide 131

Fonts

On Fonts tab user can specify the font of localized software. Furthermore, rules can be
set to apply fonts on certain conditions.

Default settings are recommended, because they are strictly based on Windows
standards.

Figure 120: Font options for localized .NET software.

IME

IME (Input Method Editor) settings specify the input method editor (IME) to use for
converting keyboard input to Asian language characters.

Multilizer Localization Guide 132

Figure 121: IME options for software localized to Far Eastern languages.

IME settings are enabled only if Multilizer project includes languages that use IME.

The IME settings here will apply corresponding value to IMEMode property in software
localized to Chinese, Japanese, and Korean.

Output

Output directory lets use specify where to store localized items.

Multilizer Localization Guide 133

Figure 122: Output options for .NET software.

Translate Project
For testing purpose, you can translate the software by using pseudo-languages (C.f.
Pseudo language, p. 68); right-click language column, choose properties, and select the
pseudo-language options. This will fill translation grid with pseudo-language translations.

Wysiwyg

Besides just translating, Multilizer allows editing of UI (user interface) elements. This is
useful in cases, where original software was not designed for localization, and translated
strings don't fit in the placeholders.

Translation with Multilizer showing visually the changes in UI is referred as Wysiwyg in
this manual. Wysiwyg is enabled both in forms editing as well as menu editing, as shown
in following images.

Multilizer Localization Guide 134

Figure 123: Localizing forms of .NET software visually.

Multilizer Localization Guide 135

Figure 124: Localizing menus of .NET software visually.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files.

Finally you can run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run.

Multilizer Localization Guide 136

Figure 125: Localized .NET software.

In order to use the satellite assembly files they must locate on the sub directories of the
main assembly file (Dcalc.exe). By default Visual Studio .NET place the EXE file to the
bin or bin\Debug subdirectory. When running the application from Multilizer, Multilizer
copies the application file to the project’s main directory (e.g. bin\Debug\Dcalc.exe ->
Dcalc.exe). Run the localized application by right-clicking the column header (e.g.
Finnish) and by choosing Run.

Specify .NET tools location
In order to create assembly DLLs, Multilizer needs to know the location of .NET tools.

To modify the settings, choose Tools!!!!Options…, select .NET, Tools.

Figure 126: Specifying of .NET tools.

Multilizer Localization Guide 137

Excluding Properties from localization
Not all string properties are intended for localization. Localization of them can even result
in crash of the software. In order to prevent this from happening, Multilizer excludes by
default some of the string properties.

In order to exclude strings from localization, you can

• Specify what string-type properties are excluded for a .NET component

• Specify what properties are always excluded

These settings will prevent Multilizer from adding them in localization project.

The settings discussed here affect the way that Multilizer scans ResX data.

Exclude properties by components

To exclude properties by components, choose Tools!!!!Options…, select .NET,
Components.

Figure 127: Excluding properties by components in .NET localization.

This dialog lets you specify the excluded properties of specific components. You can
specify one or more properties that are excluded from scanning for each component.

This dialog is also used to configure the visual representation of each component
(!Visual Representation, p. 115).

Exclude properties by name

To exclude properties by name, choose Tools!!!!Options…, select .NET, Excluded
properties.

Multilizer Localization Guide 138

Figure 128: Excluding properties by name in VCL binary localization.

This dialog lets you specify the properties that are not localized, and never included in
Multilizer project.

Visual Representation
User interface of .NET software is developed using visual components.

There are tens of standard components, and an increasing number of third-party
components. In order to display any component correctly, Multilizer allows users to
configure the visual representation of any component.

All standard components and a few 3rd-party components are defined already.

Components whose visual representation is not defined are shown with yellow
placeholder in Wysiwyg.

Figure 129: Visual form editor with unknown .NET controls.

Multilizer Localization Guide 139

To exclude properties by components, choose Tools!!!!Options…, select .NET,
Components. Choose Add.. to add new component.

Figure 130: Specifying visual representation for .NET control.

Write component name as specified in .NET namespace. Choose from Graph the
appropriate representation; a preview is shown automatically.

After next re-scan of project selected visual representation is applied in Wysiwyg, as
shown in next picture.

Figure 131: Visual Editor recognizing all .NET controls.

Visual Representation configurations can be shared between team members; you can
both import and export the settings as Multilizer item files.

Multilizer Localization Guide 140

11
Java Tutorial

This tutorial describes localization of J2SE/J2EE software.

Required product(s): Multilizer Enterprise
Multilizer for Java

Sample(s): <mldir>/java/dcalc/

Tutorial(s): –

• To learn the basics of localization of Java software and localization prerequisites, go
through the entire tutorial. It requires knowledge of Java programming, and that you
have am existing Java development environment installed on your computer.
! Introduction, p. 140.

• To learn how to use Multilizer for Java software localization, create a Multilizer project
based on the sample application.
! Create Multilizer Project, p. 143.

Introduction
Localization of Java software is based on translating resource bundles. Resource
bundles contain all strings intended for localization. Resource Bundles can be either List
resource bundles or Property Resource Bundles. Both are supported by Multilizer.

Multilizer allows localization of the following Java application files containing resource
bundles:

• JBuilder project files .(jpr, .jpx)
• Java archive files (.jar)
• Resource Bundles (.properties)
• Java list resource bundles (.java)

In addition Multilizer supports localization of .java source code files (! Source
Localization Tutorial, p. 167).

Because Java code is also embedded in XML, Multilizer supports localization of Java
code embedded in XML (! XML Tutorial, p. 163).

Localization of Resource Bundles
Java standard edition provides support for internationalization in java.util and
java.text packages. Localization is mainly done through resource bundles. This
chapter covers only the basic internationalization (I18N). Prefer I18N books and web sites
to get more information about. An excellent start is the Java tutorial at
http://www.javasoft.com/.

http://www.javasoft.com/

Multilizer Localization Guide 141

The following picture describes the Java standard edition localization process with
resource bundles and Multilizer.

Native
property files

French
property files

German
property files

English
property files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 132 Java localization process with resource bundles

The programmer uses Multilizer to extract strings from the original resource bundle (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized resource bundles (3). As the result there will
be one resource bundle for each localized language.

The following figure shows the files that Multilizer uses in the Java standard edition
localization process.

sample.properties sample.mpr sample_en.properties
sample_de.properties
sample_fr.properties

1 2
Resource file Project file Localized resource files

Figure 133 The files of the Java localization process with property resource bundles

Internationalization
Before localizing a Java application, developer needs to put all localizable strings in
resource bundles. This is called resourcing, and implies removing hard-coded strings. In
addition he must use ResourceBundle class to get strings from the resource bundles.

This all is called internationalization.

The result of internationalization is modified .java files, and one or many .properties files
that contain the strings.

Internationalization traditionally involves a lot of manual work, but modern Java
development environments include Internationalization Wizards that do the work for the
developer.

JBuilder Resource Wizard

In JBuilder you can create the resource bundle easily by using a wizard: Wizards |
Resource Strings. The wizard scans your source code, creates the bundle and makes
the necessary modifications in your source code.

Multilizer Localization Guide 142

Figure 134 JBuilder Resource wizard

Press New and change the Name to dcalc and Type to PropertyResourceBundle. Press
OK. Press Next twice. The wizard extracts strings from the source code. Press Finish to
complete the wizard.

NetBeans IDE 3.5.1

NetBeans IDE includes Internationalization Wizard that takes care of internationalization
of hard-coded strings. It is invoked from main menu:
Tools!Internationalization!Internationalization Wizard…

Figure 135: Internationalization Wizard of netBeans IDE.

Multilizer Localization Guide 143

After running the Wizard

helpMenu.setLabel("Help");

becomes

helpMenu.setLabel(java.util.ResourceBundle.getBundle("dcalc").getString("
Help"));

Manual internationalization

In plain JDK create the PropertyResourceBundle by hand and take it in use.

public class MainFrame extends Frame
{
 static ResourceBundle res = ResourceBundle.getBundle("dcalc");

Wrap all hard coded strings inside the res.getString() method. Add all keys and their
native translations to the bundle. Remember that key values in a bundle aren’t allowed to
contain e.g. space characters and you have to use Unicode escapes for non-ASCII
characters.

fineLabel.setText(res.getString("dummy"));
label4.setText(res.getString("Speeding_fine_"));
label5.setText(res.getString("Date_and_time_"));
dateLabel.setText(res.getString("dummy"));
label7.setText(res.getString("Current_locale_"));
localeLabel.setText(res.getString("dummy"));
label9.setText(res.getString("User_interface"));
languageLabel.setText(res.getString("English"));

The last String ("English") should not be localized by translating it in a resource bundle.
Remove the line and add the following code to the constructor of MainFrame.

// Update the user interface language
languageLabel.setText(res.getLocale().getDisplayLanguage());

Use also elsewhere in the MainFrame Locale.getDefault() instead of
res.getLocale(). For example:

// Update the locale label
localeLabel.setText(res.getLocale().getDisplayName());

ResourceBundle.getLocale() is supported only by JDK 1.2 or later. With JDK 1.1.8
you have to use Locale.getDefault() instead of res.getLocale().

Create Multilizer Project
In order to localize Java software, you have to create a Multilizer project. This is
described in the first part of the manual, chapter Create Project, p. 11.

Multilizer allows localization of the following Java application files:

• JBuilder project files .(jpr, .jpx)
• Java archive files (.jar)

Multilizer Localization Guide 144

• Resource Bundles (.properties)
• Java list resource bundles (.java)

Specify Localization options
After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful, but in this tutorial we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

All .NET-specific options are gathered under the corresponding target dialog. If there are
many targets in one project, you can set different localization options to all, if needed.

Encodings (all Java targets)

Encodings tab shows the languages of project. Because Java uses Unicode escapes in
resource bundles, the only encoding for all languages is Unicode escapes.

Figure 136: Encodings for localized software.

Output (all Java targets)

Output directory lets use specify where to store localized items.

Multilizer Localization Guide 145

Figure 137: Output options for Java software.

Exclude files (JBuilder targets)

When localizing JBuilder projects there may be files that must not be localized. On
Exclude files tab you can specify which files should be excluded from localization.

Multilizer Localization Guide 146

Figure 138: Excluded files for Java software.

Translate Project
For testing purpose, you can translate the software by using pseudo-languages (C.f.
Pseudo language, p. 68); right-click language column, choose properties, and select the
pseudo-language options. This will fill translation grid with pseudo-language translations.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files. Finally you can run the localized application by right-clicking
the column header (e.g. Finnish) and by choosing Run.

Multilizer Localization Guide 147

Figure 139: Localized Java software.

In order to run localized software, you need to specify location of JDK. See next chapter
for more info.

Specify Java tools location
Running localized software from within Multilizer requires that location of Java Virtual
Machine is specified. To specify it, select Tools!Options…!Java, and click J2SE/J2EE
options. Select desired Virtual Machine from drop-down list.

Figure 140: Specifying Java Virtual Machine location.

Multilizer Localization Guide 148

12
J2ME Tutorial

This tutorial describes localization of J2ME software. For localization of J2SE/J2EE
software, see Java Tutorial, p. 140.

Required product(s): Multilizer Enterprise
Multilizer for Java

Sample(s): <mldir>/j2me/dcalc/

Tutorial(s): –

• To learn the basics of localizing J2ME applications using Multilizer resource bundle
classes, go through the entire tutorial. It requires knowledge of Java programming,
and that you have am existing Java development environment installed on your
computer.
! Introduction, p. 148.

• To learn how to use Multilizer for J2ME software localization, create a Multilizer
project based on the sample application.
! Create Multilizer Project, p. 152.

There is more information in Multilizer J2ME help (located at
<mldir>/j2me/Multilizer_me.chm).

J2ME applications can be also localized by using source localization (!Source
Localization Tutorial, p. 167). While this tutorial explains how to use the flexible resource
bundle classes for localization, source localization may be the most useful for localization
of tiny applications with only a couple of localized strings.

Introduction
Java Standard Edition (J2SE) contains very rich support for localization. J2SE contains
locale class, resource bundles and formatting classes. Unfortunately Java Micro Edition
(J2ME) does not contain these classes. It only contains very low-level resource class that
the application can use to access resource file. The current CLDC-configuration has the
following I18N-support:

- java.lang.Class.getResourceAsStream(String name) that returns the
input stream for the resource file.

- java.lang.System.getProperty(String name). When passed
"microedition.locale" as a parameter this returns the system locale of the
configuration.

In theory this could be just enough support for I18N for simple applications. However
using the getResourceAsStream to get the localized user interface strings is rather

Multilizer Localization Guide 149

complicated. This is because getResourceAsStream is a very low level function. It just
gives you the access to raw resource file data. The J2ME programmer needs to write a
large amount of code to get the localized user interface strings from the resource file.

J2SE contains two kinds of resource files: property files and list files. The property file
contains the translations of the strings in one language, one translation in a row. List files
use similar approach but they represent data inside a Java class. Without having the
resource bundle class a J2ME programmer has two choices to localize his or her
application.

- Write own code on the top of java.lang.Class.getResourceAsStream. This is
a complicated task and the memory consumption might be too high.

- Change the strings in the java source code. This might seem as an easy solution but
it leads the programmer into troubles if the application source code changes. Either
the programmer needs to do the same changes to every single localized java code
or retranslate the localized java source codes again. Both approaches are difficult to
implement, slow and error prone.

Because J2ME doesn't support property files (through PropertyResourceBundle) nor list
files (through ListPropertyFiles), Multilizer contains a small footprint resource bundle class
and format that is suitable for J2ME.

Localization of Resource Bundles
With Multilizer you are able to globalize your J2ME applications. The
multilizer.microedition.Properties class has the main role. Using it is pretty
similar to using J2SE PropertyResourceBundles. It's even possible to use your old J2SE
property files directly through it.

multilizer.microedition works on a top of the CLDC configuration.
multilizer.microedition is profile independent so it works with any CLDC profile
such as MIDP and PDA profile. It is also small (3 Kbytes) and memory efficient.

Property files may be UTF-8 or ISO8859-1 encoded. This makes the Properties class
backward compatible to ISO8859-1 encoded property files. Using UTF-8 encoding makes
the files more understandable, because you don't have to use Unicode escapes for non-
ASCII characters. UTF-8 also helps conserving the memory because none English UTF-8
files are considerably smaller than Unicode escaped ASCII files.

The following picture describes the J2ME localization process.

Native
property files

French
property files

German
property files

English
property files

1 2 3

Programmer ProgrammerTranslators

Project file
Translated
Project file

Multilizer
application

Multilizer
application

Builder or
Multilizer

Figure 141 J2ME localization process

Multilizer Localization Guide 150

The programmer uses Multilizer to extract strings from the original property file (1).
Multilizer saves these strings to the project file. The programmer sends the project file to
the translator(s) that use Multilizer to translate the project file (2). The programmer uses
Multilizer or Builder to create the localized property files (3). As the result there will be one
property file for each localized language.

The following figure shows the files that Multilizer uses on the J2ME localization process.

sample.properties sample.mpr en/sample.properties
de/sample.properties
fr/sample.properties

1 2
Property file Project file Localized property files

Figure 142 The files of the J2ME localization process
Add the localized property file (e.g. de/sample.properties) instead of the original
property file (sample.properties) to the setup package when building a localized
application.

Application with an English User Interface
There is one J2ME sample in <mldir>/j2ME/dcalc directory. It is an English version of
Dcalc. Open it, compile it, and finally run it.

Depending on the selected emulator, the application looks like this for example:

Figure 143 J2ME application with an English UI
The user interface language is English. In the following chapters we will review how Dcalc
was localized.

Multilizer Localization Guide 151

Internationalization
To globalize a J2ME application you have to resource it. Resourcing means getting rid of
hard coded strings. Most applications contain strings that have been inserted inside the
source code. These strings are hard coded. It is impossible to localize such code without
changing and recompiling the code. When you resource the code you take the strings
from the source code and place them to a resource file that can easily be translated.

The main source code file of the Dcalc sample application is dcalc/Dcalc.java.

Use property files

First task is to create the property file and take it in use in the midlet. The property file
used by Dcalc has the same name as the midlet: dcalc.properties. Using the
property file in the midlet is easy. Just create a
multilizer.microedition.Properties instance and pass the property file name
as the parameter.

public class Dcalc extends MIDlet implements CommandListener
{
 private Properties prop = new Properties("/dcalc/Dcalc.properties");
 …
}

Use Properties(String) if your property files are in UTF-8 format. This is the case in
the code above.

If you want to use the same format (ISO8859-1) as J2SE property files use
Properties(String, int) instead.

Add strings to property files

The property file format is key<separator>value. Where the key is the string inside
the getString method and the value is the translation. The separator can either be a
tab or the ‘=’ character.

All hard-coded strings of Dcalc were added in property file, which looks like this:

Distance (km) Distance (km)
Speed (km/h) Speed (km/h)
Driving calculator Driving calculator
Calc Calc
About About
Exit Exit

Use format function

In Message.java file there was originally a concatenated string like this:

 alert.setString(
 new Integer(hours) + " hours " +
 new Integer(minutes) + " minutes");

We could resource “hours“ and “minutes” by wrapping them with the getString method.
However that would not be very good internationalization because the above code always
assumes that the message has the following form <hour value> <hour label> <minute
value> <minute label>. There are languages that use the label first and the value next.
Also some countries prefer to show the minutes first and hours next.

Multilizer Localization Guide 152

To solve this problem multilizer.microedition.MessageFormat class is used;
there the whole message is put in the message pattern and the pattern is combined with
data at run-time to produce the actual message.

 Object[] args = {new Integer(hours), new Integer(minutes)};

 alert.setString(MessageFormat.format(
 prop.getString("{0} hours {1} minutes"),
 args));

Now the property file contains the message pattern, {0} hours {1} minutes. The
translator can easily relocate the items in the pattern.

Load strings from property files

Resourcing the code is done with the getString method. In general you should wrap
every single string that need to be translated inside the getString method. Thus
instead of writing code like this

 private StringItem distanceLabel = new StringItem(
 null,
 "Distance (km)");

… Dcalc uses this

 private StringItem distanceLabel = new StringItem(
 null,
 prop.getString("Distance (km)"));

Conclusions

As shown in the code samples above, Dcalc source code is totally language-
independent. To localize the sample, the only task will be to create localized property
files. This is discussed in next chapter.

This chapter has covered only basic internationalization (I18N). Refer to I18N books and
web sites to get more information. An excellent start is the Java tutorial at
www.javasoft.com.

Create Multilizer Project
In order to localize J2ME software, you have to create a Multilizer project. This is
described in the first part of the manual, chapter Create Project, p. 11.

Localizable data of J2ME application is located in Resource Bundles (.properties).

Specify Localization options
After finishing the Wizard, you have to specify the localization options for the software.
Normally default options are the most useful, but in this tutorial we will review all options.

Right-click the localization target in Project Tree, and click properties to see Delphi Target
options.

All J2ME-specific options are gathered under the corresponding target (Java Resource
Target) dialog. If there are many targets in one project, you can set different localization
options to all, if needed.

Multilizer Localization Guide 153

Encodings

Encodings tab shows the languages of project. UTF-8 is the native encoding of
Multilizer’s Java property files.

Figure 144: Encodings for localized software.

Output

Output directory lets use specify where to store localized items.

Multilizer Localization Guide 154

Figure 145: Output options for Java software.

Translate Project
For testing purpose, you can translate the software by using pseudo-languages (!
Pseudo language, p. 68); right-click language column, choose properties, and select the
pseudo-language options. This will fill translation grid with pseudo-language translations.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized application files by choosing Project | Build Localized Files. This
creates the localized files.

After this, the localized versions of the application can be created. Edit for example the
build script to include the right property files for each language’s setup packages.

Finally run localized software in emulator to see how it works. Depending on the selected
emulator, the application looks like this for example:

Multilizer Localization Guide 155

Figure 146: Localized Java software.

In order to run localized software, you need to specify location of JDK. See next chapter
for more info.

Configure J2ME options
J2ME emulator and other specific options are configured in Multilizer options dialog;
select Tools!!!!Options…!!!!Java, and click J2ME options.

Multilizer Localization Guide 156

Figure 147: Specifying J2ME options.

Refer to Multilizer on-line help for more info.

Multilizer Localization Guide 157

13
Database Tutorial

This tutorial describes localization of databases.

Required product(s): Multilizer Enterprise
Multilizer for Windows

Sample(s): <none>

Tutorial(s): <none>

Introduction
Multilizer supports localization of Interbase databases.

Localization of databases
Database cloning

Multilizer localizes databases by copying the original database and populating the
database with translations of Multilizer project. This approach is called database cloning;
the structure of original database and localized database are identical.

Create Multilizer Project
In order to localize a database, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File!!!!New…. Choose ‘Localize a
database’ on first page of Wizard.

On next page user defines what database, and what fields, to localize.

Multilizer Localization Guide 158

Database cloning settings

Database must be either Interbase or MS Access. Database cloning is not support for
other databases.

Address

In database cloning Address is left empty.

Database

Ensure that you can browse to the database file. If you can’t browse to the database file,
database cloning will not work.

Parameters

If database doesn’t include date values, SQLDialect can be 1. Otherwise SQLDialect 3
needs to be used.

Tables and Fields.

Doubleclick fields that you want to localize. Right-clicking a field lets you specify, if certain
fields are added as localizable fields or comments in Multilizer project.

Fields that are not marked are cloned as such when building localized versions.

More info

More info on Project Wizard is found in the first part of the manual, chapter Create
Project, p. 11.

Multilizer Localization Guide 159

Specify Localization options
After finishing the Wizard, you have can review the localization options for database
localization. Normally default options are the most useful, but in this tutorial we will review
all options.

Right-click the localization target in Project Tree, and click properties to see Database
Target options.

Encodings

Encodings tab shows the languages of project. You can also review the original language
and character set here.

Figure 148: Encodings of database.

Fields

In order to review fields of the database, you have to press connect button. After
connecting you will have the same view to fields as in Project Wizard.

Multilizer Localization Guide 160

Figure 149: Localizable fields.

Settings

For database cloning there is only one setting to choose from: enable/disable size checks
on build.

Enabling this setting will check that translations fit in the fields.

Multilizer Localization Guide 161

Figure 150: Database cloning settings.

Translate Project
For testing purpose, you can translate the database by using pseudo-languages (C.f.
Pseudo language, p. 68); right-click language column, choose properties, and select the
pseudo-language options.

This will fill translation grid with pseudo-language translations.

Translation view

Translation view is optimized for simple navigation in database localization projects;
Project tree shows the localizable tables and fields, and lets the user navigate between
them.

Translation grid shows the original (native) language and user can choose the visible
target language.

Multilizer Localization Guide 162

Figure 151: Localization view for translating database contents.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized files by choosing Project | Build Localized Files. This creates the
localized database files.

Multilizer Localization Guide 163

14
XML Tutorial

This tutorial describes localization of any XML file.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
 Multilizer for Java

Sample(s): <none>

Tutorial(s): <none>

Introduction
XML (Extensible Markup Language) files consist of markup tags that form elements.
There can be data inside the elements, or nested elements. Inside tags there can be
attributes.

XML-files are normally Unicode-encoded, but other encodings are widely in use. XML-
files can contain just any data.

Multilizer is able to localize XML-file. It also shows XML-file visually, and bitmap data is
shown as an image, for example. Multilizer’s wysiwyg for XML makes it extremely easy to
translated XML contents in context.

Localization of XML
Multilizer localizes XML by reading in original file, and writing out either localized files or
one multilingual file. For multilingual files, Multilizer uses xml:lang attribute as defined in
XML-standards.

Multilizer never overwrites original source code file.

Create Multilizer Project
In order to localize a source file, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File!!!!New…. Choose ‘Localize a file’
on first page of Wizard.

On next page, select ‘XML file’ filter, and specify the source code file to localize.

Click next after selecting the XML file to localize.

Multilizer Localization Guide 164

Figure 152: XML-options in Project Wizard.

Multilizer lets use define all tags and attributes that need localization.

By default Multilizer interprets data as plain text. Because XML can contain just any data,
Multilizer lets users define the way to interpret data; right-click any node and select
properties to define it.

Figure 153: Defining an element containing C# source code.

Source code embedded in XML

If XML element contains source code, Multilizer can parse it. This enables translation of
strings in source code without touching the code part. (! Source Localization Tutorial, p.
167).

In order to interpret a XML element as source code, right-click a node and select any of
the source code formats.

Multilizer Localization Guide 165

Translate Project
It’s extremely easy to translate XML; Multilizer shows the file as Wysiwyg, allowing
translators to see the context. Translations are simply written in the grid, and translator
will see it visually too.

User can navigate in the XML; strings are high-lighted and clicking a string will scroll the
translation grid to corresponding location.

User can also navigate in translation grid, and corresponding string is shown in XML
view.

Translation of embedded source code

Strings in embedded source code are translated just as any string in the project. Just as
explained in Source Localization Tutorial (p. 167), Multilizer shows the strings in source
code and allows the translation of them without touching the code itself.

Figure 154: Localization of strings in C# source code embedded in XML.

Localization of bitmaps

Multilizer is able visualize the localization of embedded bitmaps.

Multilizer Localization Guide 166

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized files by choosing Project | Build Localized Files. This creates the
localized files.

Multilizer Localization Guide 167

15
Source Localization Tutorial

This tutorial describes localization of any source file formats that can be localized with
Multilizer.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

Sample(s): <none>

Tutorial(s): <none>

Introduction
Localization of single source code files, as described in this tutorial, should be used in
special cases only. If possible, use binary localization or any other platform specific
localization as described in other tutorials.

Localization of source codes
Multilizer detects strings from various source code formats, and using Multilizer for
translation makes the work safe; Multilizer doesn't allow modification of code, but just
translation of strings.

Multilizer localizes source code files by reading in original source file(s), and writing out
localized files, one for each language. Multilizer never overwrites original source code file.

Create Multilizer Project
In order to localize a source file, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File!!!!New…. Choose ‘Localize a file’
on first page of Wizard.

On next page, select 'Source code file' filter, and specify the source code file to localize.

Then continue Project Wizard as usually. More info on Project Wizard is found in the first
part of the manual, chapter Create Project, p. 11.

Translate Project
It’s extremely easy to translate source code file; Multilizer shows source code as
Wysiwyg, allowing translators to see the context. Yet, the source code can’t be altered.
Translations are simply written in the grid.

Multilizer Localization Guide 168

Figure 155: Localization view for translating source code.

User can navigate in the source code; strings are high-lighted and clicking a string will
scroll the translation grid to corresponding location.

User can also navigate in translation grid, and corresponding string is shown in code
view.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized files by choosing Project | Build Localized Files. This creates the
localized files.

Multilizer Localization Guide 169

16
Data File Localization Tutorial

This tutorial describes localization of any data files that can be localized with Multilizer.

Required product(s): Multilizer Enterprise
Multilizer for Windows
Multilizer for .NET
Multilizer for Visual C++
Multilizer for VCL
Multilizer for Java

Sample(s): <mldir>/data/key/product/sample.txt
<mldir>/data/ini/product/sample.txt

Tutorial(s): <none>

Introduction
Besides localizing resource files and source code files, Multilizer also localizes data files,
such as INI-files, SHL-files, KEY-files, and XML.

INI-files are typical configuration files for Windows software. SHL-files are used by
InstallShield®, and they contain strings shown in installation software.

This tutorial covers localization of INI, SHL, and KEY files. XML localization is described
in another tutorial.

Localization of data files
Multilizer detects strings from various data file formats, and using Multilizer for translation
makes the work safe; Multilizer doesn't allow modification anything but the strings.

Multilizer localizes data files by reading in original file(s) and writing out localized files,
one for each language. Multilizer never overwrites original file.

Create Multilizer Project
In order to localize a data file, you have to create a Multilizer project. This is done with
Project Wizard. Start Project Wizard by choosing File!!!!New…. Choose ‘Localize a file’
on first page of Wizard.

On next page, select 'Ini file' or ‘Key file’ filter, and specify the file to localize.

Ini/shl file specifics

Project Wizard allow users to specify which sections and keys in INI/SHL files require
localization. Only selected keys will appear in Multilizer translation grid.

Multilizer Localization Guide 170

Figure 156: Selecting INI-file keys for translation.

Then continue Project Wizard as usually. More info on Project Wizard is found in the first
part of the manual, chapter Create Project, p. 11.

Translate Project
Translation is done in translation grid. Only those strings defined for translation are
shown in the grid.

INI/SHL file properties

In order to redefine keys for translation, right-click corresponding target in project view,
and choose properties. In target dialog ‘Keys’ tab will show the keys that are marked for
localization.

Multilizer Localization Guide 171

Figure 157: INI-file target; keys marked for localization.

Key file properties

Key-files are extremely simple text files. Each row contains a key-value pair. In order to
redefine exact format, right-click corresponding target in project view and choose
properties. In target dialog ‘Format’ tab will show the format specification.

Figure 158: Key-file target; defining key file format.

Key-files are extremely simple text files. Each row contains a key-value pair. In order to
redefine exact format, right-click corresponding target in project view and choose
properties. In target dialog ‘Format’ tab will show the format specification.

Multilizer Localization Guide 172

Another important option is the encoding shown on ‘Encodings’ tab; it allows user to
specify encoding for each target language. User can also set the encoding for original file,
if Multilizer failed in detecting it correctly.

More info

Refer to following parts of the manual for more information on translating software, and
sharing translation work between team members.

• Pre-translate project, p. 25

• Prepare project for translation, p. 26

• Share translation work, p. 27

• Translate, p. 44

Build Localized Versions
Create the localized files by choosing Project | Build Localized Files. This creates the
localized data files.

Multilizer Localization Guide 173

Part III: Appendices

Multilizer Localization Guide 174

Index
.

.NET, 7

A

Auto-navigation, 67

B

Binary, 92

C

CLDC, 148

Close-to matches, 58

D

DateTimeToStr, 97

DLL, 103

E

Enterprise, 7

Exchange package

Secure the contents, 30

F

filter strings, 30, 37

Format, 97, 100

Fuzzy matching, 58

I

Info page, 18

Installation, 8

InstallShield, 169

Internationalization, 77, 93, 122

ITE, 105

J

J2SE, 148

K

Kilometer, 97

km/h, 97

L

language

native, 11

Localization

binary, 92

Localization Kit, 29

localization targets, 31

target, 11

M

Metric system, 100

Mile, 97

mph, 97

MPR, 11

Multilizer editions, 7

Multilizer package

MLP, 32

Multilizer Project, 11

Multilizer project file

creating, 28

N

native, 11

P

Perfect matches, 58

Project

Statistics, 71

Multilizer Localization Guide 175

project tree, 18

Project view, 18

Q

quick fix, 67

R

Resource string, 94

resource type, 19

resources

bitmap, 20

cursors, 20

Dialog, 20

Form, 20

icons, 20, See

S

SDK, 120

SDLX, 36

Statistics, 71

Stylesheet

XML, 72

System

registry, 103

T

target, 11, 20

add, 21

modify, 21

remove, 21

text-file, 35

TMX, 34

TRADOS, 35

translation grid, 20

Translation Kit

Secure the contents, 30

translation work-place, 18

Translator's Workbench, 35

U

USA, 97, 100

UTF-8, 149

V,W

VCL, 7

Visual C++, 75

wysiwyg, 20

Wysiwyg, 89, 111, 133

X

XML, 71

XSL, 72

Multilizer Localization Guide 176

Table of figures
Figure 1: Organizing the files to localize... 12
Figure 2: Selection between localizing file and localizing databases... 13
Figure 3: Specifying files to be included in project. .. 13
Figure 4: Specifying file type. ... 14
Figure 5: Specifying file type. ... 15
Figure 6: Specifying project information for new project. ... 16
Figure 7: Selecting languages for project. .. 16
Figure 8: Multilizer project view, with project tree, translation work-place (translation grid and visual editor),

and info page.. 19
Figure 9: Project tree with mainform resource shown in bold. ... 20
Figure 10: Dialog displaying project targets (Project!!!!Targets...)... 21
Figure 11: Adding new target by file type. .. 22
Figure 12: Translation Workplace; translation grid and visual editor. ... 23
Figure 13: Info Page. ... 24
Figure 14: Log view shows information of scan, make, and build processes. .. 24
Figure 15: Statistics panel with quick info of translations. ... 25
Figure 16: Default work-flow with Multilizer. ... 28
Figure 17: Running Exchange Wizard.. 29
Figure 18: Specifying the targets and resources to be exchanged. ... 30
Figure 19: Filtering rows that are exchanged. .. 30
Figure 20: Specifying project info, password protection... 31
Figure 21: Adding targets in exchange package. ... 31
Figure 22: Specifying additional files to be included in exchange package. .. 32
Figure 23: Specifying the name for exchange package. .. 32
Figure 24: Building the exchange package. ... 33
Figure 25: Running Export Wizard. .. 34
Figure 26: Specifying export file and TMX file format... 34
Figure 27: Export settings for TRADOS-compatible TMX. ... 35
Figure 28: Specifying export file and text file format. ... 36
Figure 29: Filtering of rows that are exported... 37
Figure 30: Running Import Wizard.. 38
Figure 31: Specifying the file to be imported. ... 39
Figure 32: Selecting file type for the file to be imported. .. 39
Figure 33: Specifying Import options. ... 40
Figure 34: Specifying languages to be imported from TMX file. .. 41
Figure 35: Import options for TMX.. 41
Figure 36: Specifying file format for importing text file. .. 42
Figure 37: Selecting language for importing Microsoft glossary... 43
Figure 38: Translation view in Multilizer. .. 45
Figure 39: Choosing visible columns in translation grid. .. 45
Figure 40: Options for filtering by data type. .. 46
Figure 41: Options for filtering by translation status. .. 47
Figure 42: Options for filtering by row status. ... 47
Figure 43: Options for filtering strings by Do not translate -status. .. 48
Figure 44: Translation grid options. .. 48
Figure 45: Visual editor for forms and dialogs. ... 49
Figure 46: Visual editor for menus.. 50
Figure 47: Options for visual dialog editors. ... 50
Figure 48: Translation grid with cells showing non-visible characters. .. 51
Figure 49: Accelerators view. ... 52
Figure 50: Localizing an accelerator... 52
Figure 51: Localizing images.. 53
Figure 52: Translation Memory administration. ... 57
Figure 53: Translation Memory; setting matching options... 58
Figure 54: Adding properties of a new Multilizer Translation Memory. ... 59
Figure 58: Translation Memory; general settings. ... 61
Figure 59: Translation Memory; importing of documents. ... 61

Multilizer Localization Guide 177

Figure 60: Translation Memory; specifying block words. .. 62
Figure 62: Translation Memory maintenance tab. ... 63
Figure 63: Selecting validations to perform. ... 65
Figure 64: Displaying validation results. .. 67
Figure 65: Defining Pseudo Translation properties. ... 68
Figure 66: Project report. ... 71
Figure 67: Validation report options... 72
Figure 68: Specifying style sheet for reports. .. 72
Figure 69: Binary localization process.. 76
Figure 70: Driving time calculator with English user interface... 76
Figure 71: English Visual C++ Windows CE application. ... 77
Figure 72: Insert Resource dialog box.. 78
Figure 73: String Table editor. .. 78
Figure 74: Replace dynamic items with dummy strings. .. 83
Figure 75: Resize dynamic items for long translations... 84
Figure 76: Encoding options for target languages.. 85
Figure 77: Output options for localized files. .. 86
Figure 78: The files of the binary C++ localization process in Windows. ... 86
Figure 79: Font options for localized software.. 87
Figure 80: Specifying the resources types to localize. ... 88
Figure 81: Specifying the platform of localized software. ... 89
Figure 82: Localizing forms visually.. 90
Figure 83: Localized Dcalc application (Windows)... 91
Figure 84: Localized Dcalc application (Windows CE)... 91
Figure 85: Binary localization process of a VCL application. ... 92
Figure 86: Dcalc application using an English user interface... 93
Figure 87: Message displayed when time is less than 1 hour.. 101
Figure 88: Message displayed when time is 1 hour. .. 101
Figure 89: Message displayed when time is more than 1 hour. ... 101
Figure 90: The internationalized Dcalc form on Delphi IDE. .. 102
Figure 91: The internationalized Dcalc application running with Finnish locale. .. 103
Figure 92: Delphi-specific settings for VCL binary target. .. 105
Figure 93: Message box telling that there are existing ITE translations... 105
Figure 94: Delphi target options. .. 106
Figure 95: Encodings for target languages... 107
Figure 96: Output options for localized Delphi software... 108
Figure 97: The files of the binary localization process of a VCL application .. 108
Figure 98: Font options for localized software.. 109
Figure 99: IME options for software localized to Far Eastern languages... 110
Figure 100: Specifying the resources to be localized... 111
Figure 101: Localizing Delphi forms visually in Multilizer. .. 112
Figure 102: Localizing menus visually.. 112
Figure 103: Running localized software. .. 113
Figure 104: Excluding properties by components in VCL binary localization... 114
Figure 105: Excluding properties by name in VCL binary localization. .. 114
Figure 106: Visual form editor with an unknown VCL component. .. 115
Figure 107: Specifying visual representation for VCL control. ... 115
Figure 108: Visual Editor recognizing all VCL controls. ... 116
Figure 109: Visual Studio .NET file hierarchy... 118
Figure 110: Visual Studio .NET project file localization process. ... 119
Figure 111: The files of the Visual Studio .NET project file localization process. .. 119
Figure 112: Borland Delphi 8/C#Builder file hierarchy. .. 120
Figure 113: .NET resource file localization process. .. 121
Figure 114: The files of the .NET resource file localization process. ... 121
Figure 115: Dcalc application using an English user interface... 122
Figure 116: To localize the form set the Localizable property to true. ... 122
Figure 117: Resource file after adding the first item... 123
Figure 118: Encodings for localized software... 129
Figure 119: .NET Localization options.. 130
Figure 120: Font options for localized .NET software. ... 131

Multilizer Localization Guide 178

Figure 121: IME options for software localized to Far Eastern languages... 132
Figure 122: Output options for .NET software. ... 133
Figure 123: Localizing forms of .NET software visually.. 134
Figure 124: Localizing menus of .NET software visually.. 135
Figure 125: Localized .NET software. .. 136
Figure 126: Specifying of .NET tools. ... 136
Figure 127: Excluding properties by components in .NET localization. ... 137
Figure 128: Excluding properties by name in VCL binary localization. .. 138
Figure 129: Visual form editor with unknown .NET controls... 138
Figure 130: Specifying visual representation for .NET control. .. 139
Figure 131: Visual Editor recognizing all .NET controls. .. 139
Figure 132 Java localization process with resource bundles.. 141
Figure 133 The files of the Java localization process with property resource bundles..................... 141
Figure 134 JBuilder Resource wizard ... 142
Figure 135: Internationalization Wizard of netBeans IDE.. 142
Figure 136: Encodings for localized software... 144
Figure 137: Output options for Java software. ... 145
Figure 138: Excluded files for Java software.. 146
Figure 139: Localized Java software. ... 147
Figure 140: Specifying Java Virtual Machine location. .. 147
Figure 141 J2ME localization process .. 149
Figure 142 The files of the J2ME localization process.. 150
Figure 143 J2ME application with an English UI... 150
Figure 144: Encodings for localized software... 153
Figure 145: Output options for Java software. ... 154
Figure 146: Localized Java software. ... 155
Figure 147: Specifying J2ME options. ... 156
Figure 148: Encodings of database.. 159
Figure 149: Localizable fields. .. 160
Figure 150: Database cloning settings. .. 161
Figure 151: Localization view for translating database contents.. 162
Figure 152: XML-options in Project Wizard. ... 164
Figure 153: Defining an element containing C# source code... 164
Figure 154: Localization of strings in C# source code embedded in XML. .. 165
Figure 155: Localization view for translating source code.. 168
Figure 156: Selecting INI-file keys for translation... 170
Figure 157: INI-file target; keys marked for localization. .. 171
Figure 158: Key-file target; defining key file format. ... 171

Multilizer Localization Guide 179

Glossary
Accelerator resource

Accelerator resources include key combinations used as shortcuts in application. MULTILIZER
extracts accelerator resources from executables, and allows localization of them.

Bitmap resource

Bitmap resource includes an image. MULTILIZER extracts bitmap resources from executables, and
allows localization of them.

Cursor resource

Cursor resource includes application-specific cursors. MULTILIZER extracts cursors from
executables, and allows localization of them. Cursors are bitmaps, so the localization is done with
visual editor.

Icon resource

Icon resource includes application-specific icons. MULTILIZER extracts icons from executables, and
allows localization of them. Icons are bitmaps, so the localization is done with visual editor.

Localization Kit

Localization Kit is a compressed file created with Exchange Wizard. It contains in a minimum a sub-
project. It can also include MULTILIZER Translator Edition and any user-specified files. If
Localization Kit includes MULTILIZER Translator Edition, it is a self-installing executable; when
executing it, it installs and runs MULTILIZER Translator Edition and opens the sub-project. If
MULTILIZER Translator Edition is not included, the Localization Kit is a compressed MULTILIZER
package file (MLP) that can be opened in any MULTILIZER Edition, in order to extract the contents
of it.

MULTILIZER Edition(s)

MULTILIZER Editions are different MULTILIZER products that can be purchased separately (Note:
MULTILIZER Translator Edition is free, and included in Localization Kit). MULTILIZER Editions differ
in the role in a localization process, and in support for different platforms.

Project

A MULTILIZER project must be created in order to localized any software/content. MULTILIZER
project keeps all the information required for localizing software/content. It contains 1...N targets
along with associated data. In addition MULTILIZER project keeps information of target languages
and general project information. MULTILIZER project can be created with following MULTILIZER
editions: MULTILIZER Enterprise, MULTILIZER for Oracle, MULTILIZER for Windows, MULTILIZER
for .NET, MULTILIZER for VCL, and MULTILIZER for Java.

Project Tree

Project tree is the tree-structure shown at left-hand side of MULTILIZER application's Project View.

Project View

The main view of MULTILIZER is called Project View. It is shown upon opening a MULTILIZER
project, or creating a new one.

Resources

Multilizer Localization Guide 180

Resources is data that is kept separate from program code. Resources can contain localizable data,
such as string tables to translate. MULTILIZER is able to detect localizable resource types from
within Windows executables and add them in MULTILIZER project. Some resource types support
Wysiwyg.

Sub-project

Sub-project is a MULTILIZER project that is created with Exchange Wizard. Sub-project contains a
sub-set of MULTILIZER project's languages, and sub-set of the targets. In addition translations may
be filtered out with Exchange Wizard. Sub-projects are maintained normally only for translation. After
translation, sub-project is imported in MULTILIZER project using Import Wizard.

Target

Target (MULTILIZER Localization Target) is a file/database that is supported and localized in
MULTILIZER . A target can be a software project file, software executable (EXE, DLL, etc.), single
source file, database, etc. MULTILIZER project targets are shown as root-nodes in Project Tree. For
each target you can specify native language (source language).

Target language

Target language is the language(s) into which the software/content is localized. Target language
should not be mixed with target.

Translation Work-place

Translation work-place is the part of MULTILIZER application where translations are edited. It shows
strings to translate and accompanying info, such as resources shown in Wysiwyg.

Wysiwyg

Wysiwyg (What you see is what you get) stands for the UI editors that allow users modify size and
position of dialog resources, form resources, edit bitmap resources, and menu resources visually.

Multilizer Localization Guide 181

Supported file types
This appendix shows the file types with native support in Multilizer.

Different file types can have the same file extension. In order to localize the file properly,
user has to know the file type. In order to simplify this, Multilizer attempts to auto-detect
(! File type, p. 14) the format.

Following list shows the file types with referral to starting page of the tutorial(s) that
discuss the localization of it.

File extension File type Tutorial page

bas [Visual] Basic source code file 167
bdsgroup C#Builder and Delphi 8 project group file 117
bdsproj C#Builder and Delphi 8 project file 117
bpl C++Builder binary file 92
bpl Delphi binary file 92
c Source code file 167
cpp Source code file 167
cs Source code file 167
csdproj Visual Studio .NET project file 117
csproj Visual Studio .NET project file 117
dll .NET assembly file 117
dll C++Builder binary file 92
dll Delphi binary file 92
dll Visual Basic binary file –
dll Windows binary file 75
ebp Embedded Visual Basic project file –
exe .NET assembly file 117
exe C++Builder binary file 92
exe Delphi binary file 92
exe Visual Basic binary file –
exe Windows binary file 75
h Source code file 167
hpp Source code file 167
ini Ini-file 169
jar Java archive file –
java Java resource file –
java Java source code file 167
jpr JBuilder project file –
jpx JBuilder project file –
ocx C++Builder binary file 92
ocx Delphi binary file 92
ocx Windows binary file 75
pas [Object] Pascal source code file 167
properties Java resource file –
rc Windows resource file 75
rc2 Windows resource file 75
resx .NET resource file 117
shl InstallShield string table file 169
sln Visual Studio .NET solution file 117
txt .NET resource file 117
txt Key file 169
vb Visual Basic [.NET] Source code file 167
vbdproj Visual Studio .NET project file 117
vbp Visual Basic project file –
vbproj Visual Studio .NET project file 117
vjsproj Visual Studio .NET project file 117

Multilizer Localization Guide 182

xml XML file 163

Multilizer Localization Guide 183

Localization Walkthrough Quick Reference
The Multilizer localization process is extremely straight-forward; as its simplest entire
localization process is carried out in four short steps.

Create project To do:

o Run Project Wizard.
o Specify the software you wish to localize.
o Specify target languages.

! Create Project, p. 11
Prepare project for
translation

To do:

o Remove strings that shouldn’t be
localized at all.

o Lock strings that shouldn’t be translated.
o Use Translation Memory for pre-

translation of project.

! Translate using Translation Memory, p. 25

Share translation
work & translate!

To do:

o Create a Localization Kit, and send it to
translator.

o Translate the strings.
o Modify dialog layouts in WYSIWYG.
o After translation, use Import Wizard to

import translators.
! Share translation work, p. 27

Create localized
files

To do:

o Use Validation Wizard to check that
everything is all right.

o Click “build” to create localized files.
! Build localized versions, p. 73

	Introduction
	Use of this manual
	Multilizer products
	Installation
	Useful links
	Multilizer Support and Maintenance

	Part I: Multilizer localization process
	Create Project
	Multilizer project, MPR
	Arranging the files to localize
	Project Wizard
	Target type
	File Target
	Select file type

	File type
	Target options
	Information
	Languages
	Finish

	Project maintenance
	Introduction
	Project View
	Project tree
	Modifying targets

	Translation work-place
	Info page
	Log
	Validation Log

	Re-scan project
	Categories

	Pre-translate project
	Translate using Translation Memory
	Import translations from files and databases

	Prepare project for translation
	Filtering
	Pseudo languages (QA
	Lock Visual Editors
	Translation control

	Share translation work
	Introduction
	Default workflow

	Exchange Wizard
	Creating Localization Kit
	Exchange Wizard steps
	Languages Sheet
	Options
	Information
	Application
	Include Files
	File
	Package File

	Export Wizard
	Export Wizard steps
	File
	Translation Memory Exchange file (TMX)
	Text file (TXT)
	Options

	Import Wizard
	Import Multilizer Project (MPR)
	Import from other formats
	Import Wizard steps
	File import
	Import Options

	Options for typical file imports
	Multilizer Project (MPR)
	Translation Memory Exchange file (TMX)
	Text file (TXT)
	Comma Separated Values file (CSV)
	Multilizer Dictionary File

	Translate
	Restrictions
	Translation work-place
	Selecting visible columns
	Row filtering
	Data type filter
	Translation status filter
	Row status filter
	Other filters

	Translation grid options
	Visual Editors, Wysiwyg
	Visual Editor (Wysiwyg) settings
	Options
	Grid

	Localization of strings
	Localization of accelerators
	Localization of images
	Localization of AVI and other custom resources
	Software translation specifics
	Characters with a special purpose
	Maximum length of translations

	Translation Memory maintenance
	Sending back translations

	Translation Memory
	Introduction
	Ensuring the Translation Memory quality
	Using Translation Memory
	Finding Translations

	Installation of Multilizer Translation Memory
	Create Local Translation Memory
	Create Server Translation Memory

	Store translations
	Save project translations
	Import documents
	Segmentation
	Block words

	Maintenance

	Quality assurance
	Validation Wizard
	Validation types
	Working with validation results
	Quick fix
	Navigation
	Change translation status

	Pseudo Languages
	Cover
	Minimum
	Pseudo language

	Informative QA features
	Cell coloring
	Display of non-printing characters
	Statistics panel
	Control boundary colors

	Translation Status
	Set status automatically
	Set status manually

	Reports
	Project reports
	Validation reports
	Modifying reports

	Build localized versions
	How does build work

	Windows Tutorial
	Introduction
	Open Tutorial Application
	Internationalization
	Create Multilizer Project
	Specify Localization options
	Encodings
	Output
	Fonts
	Resources
	Platform

	Translate Project
	Wysiwyg
	More info

	Build Localized Versions

	VCL Tutorial
	Introduction
	Open Tutorial Application
	Internationalization
	Run-time language switch
	Enable DRC generation in Delphi

	Create Multilizer Project
	Delphi-specific settings
	Integrated Translation Environment

	Specify Localization options
	Project
	Encodings
	Output
	Fonts
	IME
	Resources

	Translate Project
	Wysiwyg
	More info

	Build Localized Versions
	Excluding Properties from localization
	Exclude properties by components
	Exclude properties by name

	Visual Representation

	.NET Tutorial
	Introduction
	Localization of Visual Studio .NET software
	Localization of Visual Studio .NET solutions
	Localization of Visual Studio .NET projects

	Localization of Delphi 8 / C#Builder software
	Localization of Delphi 8 / C#Builder project groups
	Localization of Delphi 8 and C#Builder projects

	Localization of .NET resources
	Open Tutorial Application
	Internationalization
	Internationalization of forms
	Internationalization of code
	Hard-coded strings
	Format strings
	Culture-specific issues
	Determine startup language at command-line

	Miscellaneous
	Add icon
	Unicode

	Create Multilizer Project
	Specify Localization options
	Encodings
	Project
	Fonts
	IME
	Output

	Translate Project
	Wysiwyg
	More info

	Build Localized Versions
	Specify .NET tools location
	Excluding Properties from localization
	Exclude properties by components
	Exclude properties by name

	Visual Representation

	Java Tutorial
	Introduction
	Localization of Resource Bundles
	Internationalization
	JBuilder Resource Wizard
	NetBeans IDE 3.5.1
	Manual internationalization

	Create Multilizer Project
	Specify Localization options
	Encodings (all Java targets)
	Output (all Java targets)
	Exclude files (JBuilder targets)

	Translate Project
	More info

	Build Localized Versions
	Specify Java tools location

	J2ME Tutorial
	Introduction
	Localization of Resource Bundles
	Application with an English User Interface
	Internationalization
	Use property files
	Add strings to property files
	Use format function
	Load strings from property files
	Conclusions

	Create Multilizer Project
	Specify Localization options
	Encodings
	Output

	Translate Project
	More info

	Build Localized Versions
	Configure J2ME options

	Database Tutorial
	Introduction
	Localization of databases
	Database cloning

	Create Multilizer Project
	Database cloning settings
	Address
	Database
	Parameters
	Tables and Fields.

	More info

	Specify Localization options
	Encodings
	Fields
	Settings

	Translate Project
	Translation view
	More info

	Build Localized Versions

	XML Tutorial
	Introduction
	Localization of XML
	Create Multilizer Project
	Source code embedded in XML

	Translate Project
	Translation of embedded source code
	Localization of bitmaps
	More info

	Build Localized Versions

	Source Localization Tutorial
	Introduction
	Localization of source codes
	Create Multilizer Project
	Translate Project
	More info

	Build Localized Versions

	Data File Localization Tutorial
	Introduction
	Localization of data files
	Create Multilizer Project
	Ini/shl file specifics

	Translate Project
	INI/SHL file properties
	Key file properties
	More info

	Build Localized Versions

	Part III: Appendices

